Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-23T21:15:06.348Z Has data issue: false hasContentIssue false

Light Induced Defects in a-Si:H, Temperature Dependence of their Creation and Anneal and their effect on Photocarrier Lifetime

Published online by Cambridge University Press:  16 February 2011

Paul Stradins
Affiliation:
James Franck Institute, University of Chicago, Chicago, Illinois 60637, USA
Hellmut Fritzsche
Affiliation:
James Franck Institute, University of Chicago, Chicago, Illinois 60637, USA
Minh Q. Tran
Affiliation:
James Franck Institute, University of Chicago, Chicago, Illinois 60637, USA
Get access

Abstract

We compared the effect of light soaking on the photoresponse and defect concentration ND of samples prepared by normal glow discharge, by remote plasma discharge, by the heated mesh and by the hot wire deposition methods. After exposure to 4×1027 cm−3 absorbed photons all samples have the nearly the same Np and photoresponse. At low temperatures additional defects with small anneal energies are created. Defects created at low temperatures were found to relax between 100K and 300K before they anneal. These new results cannot be explained by present models of defect creation. The kinetics of defect creation at low temperatures is discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Stradins, P. and Fritzsche, H., Mat. Res. Soc. Conf. Proc. 297, 571 (1993).Google Scholar
2. Stradins, P. and Fritzsche, H., Phil. Mag. B 69, 121 (1994).CrossRefGoogle Scholar
3. Stradins, P., Tran, M.Q. and Fritzsche, H., J. Non - Cryst. Solids 164–166, 175 (1993).CrossRefGoogle Scholar
4. Shepard, K., Smith, Z.E., Aljishi, S. and Wagner, S., Appl. Phys. Lett. 53, 1644 (1988).Google Scholar
5. Tran, M.Q., Fritzsche, H. and Stradins, P., Mat. Res. Soc. Conf. Proc. 297, 195 (1993).CrossRefGoogle Scholar
6. Zhang, Q., Kumeda, M. and Shimizu, T., Jpn. J. Appl. Phys. 32, L371 (1993).CrossRefGoogle Scholar
7. Johnson, N.M., Santos, P.V., Nebel, C.E., Jackson, W.B., Street, R.A., Stevens, K.S. and Walker, J., J. Non - Cryst. Solids 137–138, 235 (1991).CrossRefGoogle Scholar
8. Mahan, A.H., Carapella, J., Nelson, B.P., Crandall, R.S. and Balberg, I., J. Appl. Phys. 69, 6728 (1991).Google Scholar
9. Ganguly, G. and Matsuda, A., J. Non - Cryst. Solids, 164–166, 31 (1993).Google Scholar
10. Tran, M.Q., Stradins, P. and Fritzsche, H., paper at this conference (1994).Google Scholar
11. Shklovskii, B.I., Fritzsche, H. and Baranovskii, S.D., J. Non - Cryst. Solids 114, 325 (1989).CrossRefGoogle Scholar
12. Johanson, R.E., Fritzsche, H. and Vomvas, , J. Non - Cryst. Solids 114, 274 (1989).Google Scholar
13. Street, R.A. and Biegelsen, D.K., Solid State Commun. 44, 501 (1982).Google Scholar
14. Saleh, R., Ulber, I., Fuhs, W. and Mell, H., J. Non - Cryst. Solids, 164–166, 563 (1993).Google Scholar
15. Stutzmann, M., Jackson, W.B. and Tsai, C.C., Phys. Rev. B 32, 23 (1985).CrossRefGoogle Scholar
16. Bube, R.H. and Redfield, D., J. Appl. Phys. 66 (2), 820 (1989).Google Scholar