Hostname: page-component-848d4c4894-v5vhk Total loading time: 0 Render date: 2024-06-25T20:21:39.695Z Has data issue: false hasContentIssue false

Light Harvesting Molecular Assemblies in the Design of Highly Luminescent Sol-Gel Derived Glasses

Published online by Cambridge University Press:  28 February 2011

Joel I. Dulebohn
Affiliation:
Department of Chemical and Agricultural Engineering,
Béatrice Van Vlierberge
Affiliation:
Department of Chemical and Agricultural Engineering,
Kris A. Berglund
Affiliation:
Department of Chemical and Agricultural Engineering,
Ronald B. Lessard
Affiliation:
Department of Chemistry, and the Center for Fundamental Materials Research, Michigan State University, East Lansing, MI 48824
Jeong-a Yu
Affiliation:
Department of Chemistry, and the Center for Fundamental Materials Research, Michigan State University, East Lansing, MI 48824
Daniel G. Nocera
Affiliation:
Department of Chemistry, and the Center for Fundamental Materials Research, Michigan State University, East Lansing, MI 48824
Get access

Abstract

Sol-gel derived molecular composites exhibiting intense luminescence, induced from efficient energy transduction processes, have been prepared. The composites are comprised of an Eu3+⊂ 2.2.1 cryptate complex or native Eu3+ ion embedded in sol-gel derived titania glass films. The titania glasses contain interconnected porous networks that permit the diffusion of exogenous substrates, such as the salts of benzoic and 4-tert-butylbenzoic acids, through the film. Interaction of the substrate with the embedded lanthanide complex is indicated by enhanced luminescence from the lanthanide ion. The carboxylic acid salts whose electronic excited states are produced upon capture of incident photons, undergo facile transfer of their electronic energy to the lanthanide ion. By monitoring europium ion luminescence, the diffusion constants of the benzoate and 4-tert-butylbenzoate salts have been measured. Although the diffusion of the 4-tert-butylbenzoate is slower than that of benzoate, the overall higher sensitivity of the former is consistent with hydrophobic guest-host interactions. These new molecular composites relying on the immobilization of an absorption-energytransfer- emission molecular assembly in porous, optically transparent ceramic glasses may be useful in the design of practical sensing devices.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Mukherjee, S. P., J. Non-Cryst. Solids, 42, 477 (1980).Google Scholar
2. Hench, L. L., in Science of Ceramic Chemical Processing, (Wiley-Interscience, New York, 1986), p. 52.Google Scholar
3. Pope, E. J. A. and MacKenzie, J. D., MRS Bulletin, March 17/ May 15, 1987, p. 29.Google Scholar
4. Gagliardi, C. D. and Berglund, K A., Mat. Res. Soc. Symp. Proc., 155, 127 (1989).Google Scholar
5. Newsham, M. D., Cerreta, M. K., Berglund, K. A. and Nocera, D. G., Mat. Res. Soc. Symp. Proc., 121, 627 (1988).Google Scholar
6. Lessard, R. B., Wallace, M. M., Oertling, W. A., Chang, C. K., Berglund, K A. and Nocera, D. G., Mat. Res. Soc. Symp. Proc., 155, 109 (1989).Google Scholar
7. Lessard, R. B., Berglund, K A. and Nocera, D. G., Mat. Res. Soc. Proc., 155, 119 (1989).Google Scholar
8. Sinha, S. P., in Systematics and the Properties of the Lanthanides, NATO ASI Series No. 109, edited by Sinha, S. P. (D. Reidel, Dordrecht, 1983) p. 451.Google Scholar
9. Bernbaum, E. R., Gmelin Handbook of Inorganic Chemistry, 8th ed., vol. 39, D5, edited by Moeller, T. (Springer, Berlin, Heidelberg, 1982) p. 1.Google Scholar
10. De, W. Horrocks, W. Jr., in Progress in Inorganic Chemistry, vol. 31, edited by Lippard, S. J. (John Wiley & Sons, New York, 1984) p. 1.Google Scholar
11. Richardson, F. S., Chem. Rev., 82, 541 (1982).Google Scholar
12. Blasse, G., Dirksen, G. J., Sabbatini, N., Perathoner, S., Lehn, J. M. and Alpha, B., J. Phys. Chem., 92, 2419 (1988).Google Scholar
13. Shou, H., J. Ye and Q. Yu, J. Luminescence, 42, 29 (1988).Google Scholar
14. Shou, H., Yu, Q. and Ye, J., J. Luminescence, 40/41, 682 (1988).Google Scholar
15. Horrocks, W. DeW. Jr. and Sudnick, D. R., Acc. Chem. Res., 14, 384 (1981).Google Scholar
16. Haas, Y. and Stein, G., J. Phys. Chem., 75, 3677 (1971).Google Scholar
17. Alpha, B., Balzani, V., Lehn, J-M., Perathoner, S. and Sabbatini, N., Angew. Chem. Int. Ed. Engl., 26, 1266 (1987).Google Scholar
18. Stein, G. and Würzberg, E., J. Chem. Phys., 62, 208 (1975).Google Scholar
19. Sabbatini, N., Dellonte, S., Ciano, M., Bonazzi, A. and Balzani, V., Chem. Phys. Lett., 107, 212 (1984).Google Scholar
20. Sinha, S. P., in Complexes of the Rare Earths (Pergamon Press, Oxford, 1966) p. 145, p. 148.Google Scholar
21. Mussell, R. D. and Nocera, D. G., J. Am. Chem. Soc., 110, 2764 (1988).Google Scholar
22. Allinger, N. L., J. Am. Chem. Soc., 99, 8127 (1977).Google Scholar
23. Payne, M. J. and Berglund, K. A., Mat. Res. Soc. Symp. Proc., 73, 627 (1986).Google Scholar
24. Abe, M., in Inorganic Ion Exchange Materials, edited by Clearfield, A. (CRC Press, Boca Raton, Florida, 1982) p. 185.Google Scholar
25. McKay, A. T., Proc. Phys. Soc., 42, 547 (1930).Google Scholar