Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-27T02:35:29.098Z Has data issue: false hasContentIssue false

Light Beam Induced Current Mapping of mc-Si Solar Cells: Influence of Grain Boundaries and Intragrain Defects

Published online by Cambridge University Press:  01 February 2011

Juan Jimenez
Affiliation:
jimenez@fmc.uva.es, University of Valladolid, Paseo de Belén, 1, Valladolid, 47011, Spain
Benito Moralejo
Affiliation:
benitomoralejo@gmail.com, Universidad de Valladolid, Física de la Materia Condensada, Valladolid, Spain
Vanesa Hortelano
Affiliation:
vanesahortelano@hotmail.com, University of Valladolid, Valladolid, Spain
Miguel Ángel González
Affiliation:
mrebollo@eis.uva.es, Universidad de Valladolid, Física de la Materia Condensada, Valladolid, Spain
Oscar Martínez
Affiliation:
oscar@fmc.uva.es, Universidad de Valladolid, Física de la Materia Condensada, Valladolid, Spain
Vicente Parra
Affiliation:
vparra@pevafersa.com, Grupo Pevafersa, Zamora, Spain
Manuel Avella
Affiliation:
manuel@fmc.uva.es, Universidad de Valladolid, Física de la Materia Condensada, Valladolid, Spain
Get access

Abstract

The photovoltaic market is currently dominated by multicrystalline silicon. However, this material is characterized by intrinsic structural heterogeneity due to point defects, dislocations and grain boundaries. In order to improve the cell performance the control of the electrical properties of the grain boundaries and dislocations is required. The laser beam induced current technique allows the estimation of the variations of the charge capture rates due to the different trapping centers, and is a powerful tool for the characterization of multicrystalline silicon solar cells. Nevertheless, one has to control the reflected light in order to obtain a reliable estimation of the electrical parameters.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Yang, K., Schwuttke, G.H. Ciszek, T.F. J. Cryst. Growth 50 (1980) 27.Google Scholar
[2] Donolato, C. J. Appl. Phys. 54 (1983) 1314.Google Scholar
[3] Dixon, A.E. Damaskinos, S. Oliver, B.A. Adsett, R.T. J. Can. Cer. Soc. 53 (1984), 21 Google Scholar
[4] Martinuzzi, S. Périchaud, I., Warchol, F. Solar Energy Mater. Sol. Cells 80 (2003) 343.Google Scholar
[5] Moralejo, B. González, M. A., Jiménez, J., Parra, V. Martínez, O., Gutiérrez, J., Charro, O. J. Electron. Mater. (to be published)Google Scholar
[6] Eisele, C. Nebel, C.E. Stutzmann, M., J. Non Cryst. Solids. 266269 (2000), 1100 Google Scholar
[7] Sontag, D., Hahn, G., Geiger, P., Fath, P., Bucher, E., Solar Energy Mater. Sol. Cells 72 (2002) 533 Google Scholar
[8] Nishioka, K., Yagi, T., Uraoka, Y., Fuyuki, T., Solar Energy Mater. Sol. Cells 91 (2007) 1 Google Scholar