Hostname: page-component-7479d7b7d-767nl Total loading time: 0 Render date: 2024-07-11T12:27:04.771Z Has data issue: false hasContentIssue false

Layered Silicate/ATBN Nanocomposite

Published online by Cambridge University Press:  15 February 2011

A. Moet
Affiliation:
Department of Macromolecular Science, Case Western Reserve University, Cleveland, OH 44106-7202
A. Akelah
Affiliation:
Department of Chemistry, Tanta University, Tanta, Egypt
N. Salahuddin
Affiliation:
Department of Macromolecular Science, Case Western Reserve University, Cleveland, OH 44106-7202
A. Hiltner
Affiliation:
Department of Macromolecular Science, Case Western Reserve University, Cleveland, OH 44106-7202
E. Baer
Affiliation:
Department of Macromolecular Science, Case Western Reserve University, Cleveland, OH 44106-7202
Get access

Abstract

Composites of amine terminated butadieneacrylonitrile (ATBN) and montmorillonite (MMT) were prepared by ion exchange between the onium salt of the polymer and the interlamellar cation of the mineral following two different preparation approaches. The first carried out the ion exchange in situ and used dioxane, a better solvent for the polymer, and the second administered the onium salt to MMT using dimethylsulfoxide (DMSO). Elemental analysis and IR spectroscopy indicated that all the ionic sites of the mineral have been occupied by polymer end groups. The d (001) spacing and the span between the internal lamelar surface were only expanded to about 14 Å and 5 Å, respectively, suggesting horizontal packing of the polymer molecules. TEM of microtome sections prepared from compression molded composites revealed that the lamellae, laminated with polymers assembled into multiplets of about 5 nm for both preparations. The multiplets clustered into mineral rich domains whose average size was 250 nm for the DMSO preparation. Finer clusters (70 nm) were obtained by the first method. This three fold decrease in the average domain size was attributed to the strong solvation power of dioxane in the binary solvent and to the locale of ion exchange.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Smith, C. R., J. Am. Chem. Soc., 56, 1561 (1934).Google Scholar
2. Bryk, M. T., Goikhman, A. Sh., Skobets, I. E. and Ovcharenko, F. D., Kolloidnyi Zhurnal, 45, 1043 (1983). Translated, Plenum Publishing (1984).Google Scholar
3. Mering, J., Trans. Faraday Soc., 42, 205 (1946).Google Scholar
4. Theng, B. K. G.,”The Chemistry of Clay-Organic Reactions”, Adam Hilger, London (1974).Google Scholar
5. Jones, T. R., Clay Miner., 18, 399 (1986).Google Scholar
6. Kato, C., Kuroda, K. and Takahara, H., Clays Clay Miner., 29, 294 (1981).Google Scholar
7. Solomon, D. H. and Rosser, M. J., J. Appl. Polym. Sci., 9, 1261 (1965).Google Scholar
8. Solomon, D. H. and Swift, J. D., J. Appl. Polym. Sci., 11, 2567 (1967).Google Scholar
9. Solomon, D. H. and Loft, B. C., J. Appl. Polym. Sci., 12, 1253 (1968).Google Scholar
10. Haque, E., and Armeniades, C. D., Polym. Eng. Sci., 26, 1524 (1986).Google Scholar
11. Moet, A.; Qutubuddin, S. and Kelly, P., “Anti-shrink Agent for plastic Moldings”, Final report, The Edison Materials Technology Center, Dayton, OH, October, 1990.Google Scholar
12. Kelly, P., Akelah, A., Qutubuddin, S. and Moet, A., J. Mater. Sci., 29 (1994).Google Scholar
13. Okada, A., Kawasumi, M., Kurauchi, T. and Kamigaito, O., Polym. Preprints, 28, 447 (1987).Google Scholar
14. Fukushima, Y. and Inagaki, S., J. Inclusion Phenomena, 5, 473 (1987).Google Scholar
15. Fukushima, Y., Okada, A., Kawasumi, M., Kurauchi, T. and Kamigaito, O., Clay Miner., 23, 27 (1988).Google Scholar
16. Usuki, A., Kawasumi, M., Kojima, Y., Okada, A., Kurauchi, T. and Kamigaito, O., J. Mater. Res, 8, 1174 (1993).Google Scholar
17. Usuki, A., Kojimai, Y., Kawasumi, M., Okada, A., Fukushima, Y., Kurauchi, T. and Kamigaito, O., J. Mater. Res., 8, 1179 (1993).Google Scholar
18. Moet, A. and Akelah, A., J. Mater. Lett., 18, 97 (1993).Google Scholar
19. Vaia, R. A., Ishii, H. and Giannelis, E. P., Chem. Mater., 5, 1694 (1993).Google Scholar
20. Usuki, A. et al. , US Pat, 4,889,885 (1989).Google Scholar
21. Okada, A., Fukumori, K., Usuki, A., Kojima, Y., Sato, N., Kurauchi, T. and Kamigaito, O., Polym. Preprints, 32, 540 (1991).Google Scholar
22. Koijima, Y., Fukumori, K., Usuki, A., Okada, A. and Kurauchi, T., J. Mater. Sci. Lett., 12, 889 (1993).Google Scholar
23. Moet, A., Akelah, A., A. Hiltner and Baer, E., “Layered Silicate/PS Nanocomposite” Pagpr No. V4.2, this symposium.Google Scholar
24. Heacock, R. A. and Marion, L., Can. J. Chem., 34, 1782 (1956).Google Scholar
25. Bernadette, C. and Sandorfy, C., Can. J. Chem., 36, 1181 (1958).Google Scholar
26. Blumstein, A., J. Polym. Sci., 3, 2653 (1965).Google Scholar
27. Akelah, A., Salahuddin, N., Hiltner, A., Baer, E. and Moet, A., Chem. Mater., in press.Google Scholar
28. Wilson, A. D. and Prosser, H. J., “Developments in Ionic Polymers”, Elsevier Applied Science, New York (1986).Google Scholar
29. Messersmith, P. B. and Giannelis, E. P., Chem. Mater., 15, 1064 (1993).Google Scholar