Skip to main content Accessibility help
×
×
Home

Layered Cuprates

  • P. A. Salvador (a1), K. Otzschi (a2), H. Zhang (a1), J. R. Mawdsley (a1), K. B. Greenwood (a2), B. M. Dabrowsi (a3), L. D. Marks (a1), T. O. Mason (a1) and K. R. Poeppelmeier (a2)...

Abstract

Layered copper-oxide superconductors exhibit the highest critical transition temperatures of any materials. Yet all of the known double perovskites A′A″B′B″O6 containing copper have a random or rock salt distribution of the B cations with the exception of the unique layered arrangement found in La2CuSnO6. Only the layered arrangement contains the CuO2 2- planes which are necessary for high-temperature superconductivity. The occurrence of layered or two dimensional structures increases markedly when vacancies are introduced on the oxygen sublattice, as evidenced in Ln 2 AEmCu 2 TimO 5+3m (Ln = lanthanide, Y: AE = Ba, Ca: 2 ≤ m ≤ 4). Similarities among oxygen-deficient structures, especially those with two-dimensional solid-state features, are discussed. Combined conductivity and thermopower analysis are presented to elucidate their unique internal chemistry, defect structure, and conduction parameters. In particular, data for La2-xSrxCuSnO6 are presented and related to the crystal chemistry of the copper-oxygen layer. These data are compared with La2Ba2Cu2Sn2O11 and La2Ba2Cu2Ti2O11 to illustrate the significance of oxygen vacancies on the properties of the copper oxygen planes. New layered cuprates are discussed including the mixed A-site stoichiometries Ln′Ln″AEm Cu2Ti m O5+3m (Ln = lanthanide, Y: AE = Ba, Ca: 2 ≤ m ≤ 4) which contain the smaller lanthanide (Ln″) ordered between the closely spaced, facing sheets of Cu-O square pyramids.

Copyright

Corresponding author

Author to whom correspondence should be addressed

References

Hide All
1. Salvador, P. A., Mason, T. O., Hagerman, M. E. and Poeppelmeier, K. R., in Chemistry of Advanced Materials: A New Discipline. edited by Interrante, L.V. and Hampden-Smith, M. (VCH, In Press).
2. Greenwood, K. B., Anderson, M. T., Poeppelmeier, K. R., Novikov, D. L., Freeman, A. J., Dabrowski, B., Gramsch, S. A. and Burdett, J. K., Physica C 235–240, p. 349 (1994).
3. Greenwood, K. B., Sarjeant, G. M., Poeppelmeier, K. R., Salvador, P. A., Mason, T. O., Dabrowski, B., Rogacki, K. and Chen, Z., Chem. Mater. 7, p. 1355 (1995).
4. Salvador, P. A., Mason, T. O., Otzschi, K., Greenwood, K. B., Poeppelmeier, K. R. and Dabrowski, B., J. Am. Chem. Soc. (Submitted).
5. Salvador, P. A., Shen, L., Mason, T. O., Greenwood, K. B. and Poeppelmeier, K. R., J. Solid State Chem. 119, p. 80 (1995).
6. Otzschi, K. D., Poeppelmeier, K. R., Salvador, P. A., Mason, T. O., Zhang, H. and Marks, L. D., J. Am. Chem. Soc. 118, p. 8951 (1996).
7. Anderson, M. T. and Poeppelmeier, K. R., Chem. Mater. 3, p. 476 (1991).
8. Anderson, M. T., Poeppelmeier, K. R., Gramsch, S. A. and Burdett, J. K., J. Solid State Chem. 102, p. 164 (1993).
9. Trestman-Matts, A., Dorris, S. E. and Mason, T. O., J. Am. Ceram. Soc. 66, p. 589 (1983).
10. Anderson, M. T., Vaughey, J. T. and Poeppelmeier, K. R., Chem. Mater. 5, p. 151 (1993).
11 Raveau, B., Michel, C. and Hervieu, M., J. Solid State Chem. 88, p. 140 (1990).
12. Raveau, B., Michel, C., Hervieu, M. and Groult, D., Crystal Chemistry of High-Tc Superconducting Copper Oxides (Springer-Verlag, Berlin, 1991).
13. Goodenough, J. B. and Manthiram, A., J. Solid State Chem. 88, p. 115 (1990).
14. Anderson, M. T. and Poeppelmeier, K. R., Appl. Supercon. 1, p. 493 (1993).
15. Anderson, M. T., Greenwood, K. B., Taylor, G. A. and Poeppelmeier, K. R., Prog. Solid St. Chem. 22, p. 197 (1993).
16. Yamada, N. and Ido, M., Physica C 203, p. 240 (1992).
17. Longo, J. M. and Raccah, P. M., J. Solid Stae Chem. 6, p. 526 (1973).
18. Jorgensen, J. D., Schüttler, H.-B., Hinks, D. G., Capone, D. W., Zhang, H. K. and Brodsky, M. B., Phys. Rev. Lett. 58, p. 1024 (1987).
19. Novikov, D. L., Freeman, A. J., Poeppelmeier, K. R. and Zhukov, V. P., Physica C 252, p. 7 (1995).
20. Su, M.-Y., Elsbernd, C. E. and Mason, T. O., J. Am. Ceram. Soc. 73, p. 415 (1990).
21. Tomlins, G. W., Jeon, N.-L., Mason, T. O., Groenke, D. A., Vaughey, J. T. and Poeppelmeier, K. R., J. Solid State Chem. 109, p. 338 (1994).
22. Jonker, G. H., Philips Res. Repts 23, p. 131 (1968).
23. Su, M.-Y., Sujata, K. and Mason, T. O., in Ceramics Superconductors II. edited by Yan, M.F. (The American Ceramic Society, Westerville, Ohio, 1988), p. 99.
24. Su, M.-Y., Elsbernd, C. E. and Mason, T. O., Physica C 160, p. 114 (1989).
25. Hong, B.-S. and Mason, T. O., in Superconductivity and Ceramic Superconductors II. edited by Nair, K.M., Balachandran, U., Chiang, Y.-M. and Bhalla, A.S. (American Ceramic Society, Westerville OH, 1991), p. 95.
26. Anderson, M. T., Poeppelmeier, K. R., Zhang, J. P., Fan, H.-J. and Marks, L. D., Chem. Mater. 4, p. 1305 (1992).
27. Wu, M. K., Ashbum, J. R., Torng, C. J., Hor, P. H., Meng, R. L., Gao, L., Huang, Z. J., Wang, Y. Q. and Chu, C. W., Phys. Rev. Lett. 58, p. 908 (1987).
28. Beno, M. A., Soderholm, L., Capone, I. D. W., Hinks, D. G., Jorgensen, J. D., Grace, J. D., Schuller, I. K., Segre, C. U. and Zhang, K., Appl. Phys. Lett. 51, p. 57 (1987).
29. Vaughey, J. T., Thiel, J. P., Hasty, E. F., Groenke, D. A., Stern, C. L., Poeppelmeier, K. R., Dabrowski, B., Hinks, D. G. and Mitchell, A. W., Chem. Mater. 3, p. 935 (1991).
30. Maeda, H., Tanaka, Y., Fukutomi, M. and Asano, T., Jp. J. Appl. Phys. 27, p. L209 (1988).
31. Cava, R. J., Batlogg, B., Dover, R. B. v., Krajewski, J. J., Waszczak, J. V., Fleming, R. M., Jr, W. F. P., Jr, L. W. R., Marsh, P., James, A. C. W. P. and Schneemeyer, L. F., Nature 345, p. 602 (1990).
32. Fischer, P., Karpinski, J., Kaldis, E., Jilek, E. and Rusiecki, S., Solid State Comm. 69, p. 531 (1989).
33. Er-Rakho, L., Michel, C., Lacorre, P. and Raveau, B., J. Solid State Chem. 73, p. 531 (1988).
34. Vaughey, J. T. and Poeppelmeier, K. R., in Chemistry of Electronic Ceramic Materials. edited by Davies, P.K. and Roth, R.S. (National Institute of Standards and Technology, Washington DC, 1991), p. 419.
35. Murayama, N., Sudo, E., Kani, K., Tsuzuki, A., Kawakami, S., Awano, M. and Torii, Y., Jpn. J. Appl. Phys. 27, p. L1623 (1988).
36. Greaves, C. and Slater, P. R., Physica C 161, p. 245 (1989).
37. Vybomov, M., Perthold, W., Michor, H., Holubar, T., Hilscher, G., Rogl, P., Fischer, P. and Divis, M., Phys. Rev. B 52, p. 1389 (1995).
38. Hellebrand, B., Wang, X. Z. and Steger, P. L., J. Solid State Chem. 110, p. 32 (1994).
39. Gormezano, A. and Weiler, M. T., J. Mater. Chem. 3, p. 771 (1993).
40. Gormezano, A. and Weiler, M. T., J. Mater. Chem. 3, p. 979 (1993).
41. Palacin, M. R., Fuertes, A., Casan-Pastor, N. and Gómez-Romero, P., Adv. Mater. 6, p. 54 (1994).
42. Palacin, M. R., Krumeich, F., Caldés, M. T. and Gómez-Romero, P., J. Solid State Chem. 117, p. 213 (1995).
43. Novikov, D. L., Freeman, A. J. and Poeppelmeier, K. R., Phys. Rev. B 53, p. 9448 (1996).
44. Zhu, W. J., Huang, Y. Z., Ning, T. S. and Zhao, Z. X., Mat. Res. Bull. 30, p. 243 (1995).
45. Pack, M. J., Gormezano, A. and Weiler, M. T., Personal Communication.
46. Gómez-Romero, P., Palacin, M. R. and Rodriguez-Carvajal, J., Chem. Mater. 6, p. 2118 (1994).
47. Shannon, R. D., Acta Cryst. A32, p. 751 (1976).
48. Mattheiss, L. F., Phys. Rev. B 45, p. 2442 (1992).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

MRS Online Proceedings Library (OPL)
  • ISSN: -
  • EISSN: 1946-4274
  • URL: /core/journals/mrs-online-proceedings-library-archive
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed