Skip to main content Accessibility help
×
Home

Lattice-Symmetry-Driven Phase Competition in Vanadium Dioxide

  • A. Tselev (a1), I. A. Luk’yanchuk (a2), I. N. Ivanov (a1), J. D. Budai (a1), J. Z. Tischler (a1), E. Strelcov (a3), A. Kolmakov (a3) and S. V. Kalinin (a1)...

Abstract

We performed group-theoretical analysis of the symmetry relationships between lattice structures of R, M1, M2, and T phases of vanadium dioxide in the frameworks of the general Ginzburg-Landau phase transition theory. The analysis leads to a conclusion that the competition between the lower-symmetry phases M1, M2, and T in the metal-insulator transition is pure symmetry driven, since all the three phases correspond to different directions of the same multi-component structural order parameter. Therefore, the lower-symmetry phases can be stabilized in respect to each other by small perturbations such as doping or stress.

Copyright

Corresponding author

*Corresponding author, e-mail: tseleva@ornl.gov

References

Hide All
1. Morin, F. J., Phys. Rev. Lett. 3, 34 (1959).
2. Cavalleri, A. et al. , Phys. Rev. B 70, 161102 (2004).
3. Kim, H.-T. et al. , New J. Phys. 6, 52 (2004).
4. Zhang, S., Chou, J. Y., and Lauhon, L. J., Nano Lett. 9, 4527 (2009).
5. Zylbersztejn, A. and Mott, N. F., Phys. Rev. B 11, 4383 (1975).
6. Biermann, S. et al. , Phys. Rev. Lett. 94, 026404 (2005).
7. Kim, H.-T. et al. , Phys. Rev. Lett. 97, 266401 (2006).
8. Kübler, C. et al. , Phys. Rev. Lett. 99, 116401 (2007).
9. Qazilbash, M. M. et al. , Science 318, 1750 (2007).
10. Wei, J. et al. , Nat. Nanotechnol. 4, 420 (2009).
11. Lazarovits, B. et al. , Phys. Rev. B 81, 115117 (2010).
12. Sohn, J. I. et al. , Nano Lett. 9, 3392 (2009).
13. Jones, A. C. et al. , Nano Lett. 10, 1574 (2010).
14. Marezio, M. et al. , Phys. Rev. B 5, 2541 (1972).
15. Goodenough, J. B., J. Solid State Chem. 3, 490 (1971).
16. Rice, T. M., Launois, H., and Pouget, J. P., Phys. Rev. Lett. 73, 3042 (1994).
17. Eyert, V., Annalen der Physik 11, 650 (2002).
18. Landau, L. D. and Lifshits, E. M., Statistical Physics, Part 1 (Course of Theoretical Physics, Volume 5) (3rd edition, Butterworth-Heinemann, Oxford, UK, 1980).
19. Brews, J. R., Phys. Rev. B 1, 2557 (1970).
20. Kwok, P. C. and Miller, P. B., Physical Review 151, 387 (1966).
21. Gay, J. G., Albers, W. A., and Arlinghaus, F. J., J. Phys. Chem. Solids 29, 1449 (1968).
22. Stokes, H. T. and Hatch, D. M., Isotropy subgroups of the 230 crystallographic space groups (World Scientific Publishing Company, Singapore ; Teaneck, NY, USA, 1988).

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed