Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-26T05:48:22.463Z Has data issue: false hasContentIssue false

Lattice Dynamics Study of Anisotropic Heat Conduction in Superlattices

Published online by Cambridge University Press:  01 February 2011

B. Yang
Affiliation:
Mechanical and Aerospace Engineering Department, University of California at Los Angeles, Los Angeles, CA 90095–1597
G. Chen
Affiliation:
Mechanical and Aerospace Engineering Department, University of California at Los Angeles, Los Angeles, CA 90095–1597
Get access

Abstract

Past studies on the thermal conductivity suggest that phonon confinement and the associated group velocity reduction are the causes of the observed drop in the cross-plane thermal conductivity of semiconductor superlattices. In this work, we investigate the contribution of phonon confinement to the in-plane thermal conductivity of superlattices and the anisotropic effects of phonon confinement on the thermal conductivity in different directions, using a lattice dynamics model. We find that the reduced phonon group velocity due to phonon confinement may account for the dramatic reduction in the cross-plane thermal conductivity, but the in-plane thermal conductivity drop, caused by the reduced group velocity, is much less than the reported experimental results. This suggests that the reduced relaxation time due to diffuse interface phonon scattering, dislocation scattering, etc, should make major contribution to the in-plane thermal conductivity reduction.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES:

1. Chen, G., Ann. Rev. Heat Transf. 7, 1 (1996).Google Scholar
2. Chen, G., Volz, S. G., Borca-Tasciuc, T., Zeng, T., Song, D., Wang, K. L., and Dresselhaus, M.S., MRS Proc. 545, 357(1998).Google Scholar
3. Yao, T., Appl. Phys. Lett. 51, 1798 (1987).Google Scholar
4. Yu, X. Y., Chen, G., Verma, A., and Smith, J. S., Appl. Phys. Lett. 67, 3553 (1995).Google Scholar
5. Venkatasubramanian, E., Siivola, E., and Colpitts, T. S., ICT98 Proc. 17, 191(1998)Google Scholar
6. Chen, G., Tien, C. L., Wu, X., and Smith, J. S., J. Heat Transf. 116, 325 (1994).Google Scholar
7. Capinski, W. S., Maris, H. J., Ruf, T., Cardona, M., Ploog, K., and Katzer, D. S., Phys. Rev B. 59, 8105(1999).Google Scholar
8. Capinski, W. S. and Maris, H. J., Physica B 219, 699 (1996).Google Scholar
9. Lee, S. M., Cahill, D., and Venkatasubramanian, R., Appl. Phys. Lett. 70, 2957 (1997).Google Scholar
10. Venkatasubramanian, R., Naval Res. Rev. 58, 44 (1996).Google Scholar
11. Song, D.W., Caylor, C., Liu, W.L., Zeng, T., Borca-Tasciuc, T., Sands, T.D., and Chen, G., ICT99 Proc., in pressGoogle Scholar
12. Borca-Tasciuc, T., Liu, W.L., Liu, J.L., Zeng, T., Song, D.W., Moore, C.D., Chen, G., Wang, K.L., Goorsky, M.S., Radetic, T., Gronsky, Ronald, Sun, X. and Dresselhaus, M. S., ICT99 Proc., in press.Google Scholar
13. Chen, G., J. of Heat Transf. 119, 220 (1997).Google Scholar
14. Chen, G. and Neagu, M., Appl. Phys. Lett. 71, 2761 (1997).Google Scholar
15. Chen, G., Phys. Rev. B 57, 14958 (1998).Google Scholar
16. Hyldgaard, P., and Mahan, G. D., Phys. Rev. B 56, 10754 (1997).Google Scholar
17. Tamura, S., Tanaka, Y., and Maris, H. J., Phys. Rev. B 60, 2627(1999).Google Scholar
18. Hyldgaard, P. and Mahan, G. D., Thermal Conductivity (Technomic, Lancaster, PA, 1996) 23, 172.Google Scholar
19. Chen, G., J. Heat Transf., 121, 945 (1999).Google Scholar
20. Young, D. A. and Maris, H. J., Phys. Rev. B 40, 3685(1989).Google Scholar
21. Balandin, A. and Wang, K. L., Phys. Rev. B 58, 1544 (1998).Google Scholar
22. Ren, S.Y. and Dow, J. D., Phys. Rev. B 25, 3750 (1982).Google Scholar