Skip to main content Accessibility help

Lateral and Vertical Growth Study in the Initial Stages of GaN Growth on Sapphire with ZnO Buffer Layers by Hydride Vapor Phase Epitaxy

  • Shulin Gu (a1), Rong Zhang (a1), Ling Zhang (a1) and T. F. Kuech (a1)


The initial stage of hydride vapor phase epitaxy GaN growth on ZnO-buffered sapphire is reported. A high supersaturation in the growth ambient was used to favor a rapid initial growth on the substrate. A subsequent step with high lateral growth rate was chosen to promote coalescence of the initial islands and provide optimal material properties. The specific mole fractions of the GaCl and NH3 control these vertical and lateral growth rates. The use of a two- step growth process in the GaN growth has led to improved and controlled morphology and high quality GaN materials have then been grown on sapphire substrate with and without ZnO buffer layers.



Hide All
1. Nakamura, S., Jpn. J. Appl. Phys., 30, L1705(1991).
2. Akasaki, I., and Amano, H., J. Crystal Growth, 163, 86(1996).
3. Munkholm, A., Thompson, C., Foster, C. M., Eastman, J. A., Auciello, O., and Stephenson, G. B., Fini, P., DenBaars, S. P. and Speck, J. S., Appl. Phys. Lett., 72, 2972(1998).
4. Ito, T., Sumiya, M., Takano, Y., Ohtsuka, K., and Fuke, S., Jap. J. Appl. Phys., 38, 649 (1999).
5. Sugiera, L., Itaya, K., Nishio, J., Fujimoto, H., and Kokubun, Y., J. Appl. Phys., 82, 4877 (1999).
6. Hersee, S.D., Ramer, J., Zeng, K., Kranenberg, C., Malloy, K., Banas, M., and Goorsky, M., J. Electronic Materials (1995) 1519.
7. Ishida, M., Hashimoto, T., Takayama, T., Imafuji, O., Yuri, M., Yoshikawa, A., Itoh, K., Terakoshi, Y., Sugino, T., Shirafuji, J., Gallium Nitride and Related Materials II. Symposium Mater. Res. Soc (1997) 69.
8. Byun, D., Jeong, J., Lee, J. I., Kim, B., Yoo, J. B., Kum, D. W., III-V Nitrides. Symposium Mater. Res. Soc. (1997) 59.
9. Keller, S., Kapolnek, D., Keller, B., Wu, Y., Heying, B., Denbarrs, S.P., J. Appl. Phys. 35 285 (1996).
10. Uchida, K., Nishida, K., Kondo, M., Munekata, H., J. Crystal Growth 189–190, 270(1998).
11. Hiramatus, K., Itoh, S., Amano, H., Akasaki, O., Kuwano, N., Shiraishi, T., and Ohi, K., J. Crystal. Growth 115, 628(1991).
12. Molnar, R. J., Gotz, W., Romano, L. T., and Johnson, J. M., J. Crystal Growth, 178, 147 (1997).
13. Detchprohm, T., Hiramatsu, K., Amano, H., and Akasaki, I., Appl. Phys. Lett., 61, 2688 (1992).
14. Molnar, R. J., Maki, P., Aggarwal, R., Laiu, Z.L., Brown, E.R., Melngailis, I., Gätz, W., Romano, L.T., and Johnson, N.M., Mater. Res. Soc. Symp. Proc., 423, 221 (1996).
15. Ueda, T., Huang, T. F., Spruytte, S., Lee, H., Yuri, M., Itoh, K., Baba, T., and Harris, J. S. Jr, J. Crystal Growth, 187, 340 (1998).
16. Gu, Shulin, Zhang, Rong, , JingxiSun, Zhang, Ling, and Kuech, T. F., unpublished.
17. Golan, Y., Wu, X. H., Speck, J. S., Vando, R. P., and Phanse, V. M., Appl. Phys. Lett., 73(21), 3090(1998).
18. Zywietz, T., Negebauer, J., and Scheffler, M., Appl. Phys. Lett., 73(4), 487(1998).
19. Mattila, T., and Nieminen, R. M., Phys. Rev. B, 55(15), 9571(1997).


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed