Hostname: page-component-8448b6f56d-42gr6 Total loading time: 0 Render date: 2024-04-19T16:25:40.216Z Has data issue: false hasContentIssue false

Laser-Induced Chemical Vapor Deposition of Ge-Se Thin Films

Published online by Cambridge University Press:  25 February 2011

Tongsan D. Xiao
Affiliation:
The University of Connecticut, Institute of Materials Science and Department of Metallurgy, U-136, Storrs, CT 06268
Peter R. Strutt
Affiliation:
The University of Connecticut, Institute of Materials Science and Department of Metallurgy, U-136, Storrs, CT 06268
Get access

Abstract

The synthesis of Ge-Se deposits has been demonstrated by using continuous wave CO2 laser excited reactions of GeC14 and Se2Cl2 precursors, each transported in an argon carrier gas. The deposited Ge-Se layers are rich in Ge with a composition of 70% of Ge and 30% of Se. Microstructural examinations reveal that the microstructure consists of amorphous Ge-Se particles ranging in diameter from 2000 Å to 7000 Å. Suggestions are made for the possible mechanisms that might occur during film deposition including, pyrolytic reactions, multiphoton dissociations, and Volmer-Weker film growth.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Wilson, J. I. B. & Blanc, D., SPIE, 618, 118 (1986).Google Scholar
2. Goswami, A. & Nikam, P. S., Indian J. Pure & Appl. Phys., 8, 798 (1970).Google Scholar
3. Kannewurf, C. R. & Cashman, R. J., J. Phys. Chem. Solids, 22, 293 (1961).CrossRefGoogle Scholar
4. lrven, J. & Robinson, A., phys. & Chem. Glass, 21, 47 (1987).Google Scholar
5. Inada, K., IEEE, J. Quant. Elect., QE–18, 1424 (1982).Google Scholar
6. Takahashi, H., Sugimoto, I., Sato, T., & Yoshida, S., SPIE, 320, 88 (1982)Google Scholar
7. Hanabusa, M. & Lakin, K. M., Appl Phys. Lett., 35, 662 (1979).CrossRefGoogle Scholar
8. Barananskas, V. & Mammana, C. I. Z., Appl. Phys. Lett., 36, 930 (1980).Google Scholar
9. Boyer, P. K., Moore, C. A., Solanki, R., Ritchie, W. K., Roche, G. A., & Collins, G. J., Mat. Res. Soc. Symp. Proc. (Laser Diagn. Photochem. Process Semicond. Devices), 17, 119 (1983).Google Scholar
10. Boyer, P. K., Roche, G. A., Ritchie, W. H., & Collins, G. J., Appl. Phys. Lett., 40, 716 (1982).CrossRefGoogle Scholar
11. Solanki, R. & Collins, G. J., Appl. Phys. Lett., 42, 662 (1983).Google Scholar
12. Danforth, S. C. & Haggerty, J. S., J. Amer. Cerami Soc., 66, 58 (1983).CrossRefGoogle Scholar
13. Froidevaux, Y. R., Gilgen, H. H., Appl Phys., A 37, 121 (1985).Google Scholar
14. Volmer, M. & Weber, A., Z. Phys. Chem. (Leipzig), 119, 277 (1926).Google Scholar
15. , Kanamori, Terunuma, Y., Takahashi, S., & Miyashia, T., J. Non-Cryst. Solids, 69, 231 (1985).CrossRefGoogle Scholar
16. Hilton, A. R., Hayes, D. J., & Rechtin, M. D., J. Non-Cryst. Solids, 17, 319 (1975).CrossRefGoogle Scholar
17. Katsuyama, T., Ishida, K., Satoh, S., & Matsumura, H., Appl. Phys. Lett., 45, 925 (1984).Google Scholar
18. Xiao, T., M. S. Thesis, The University of Connecticut, 1987.Google Scholar