Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-25T07:54:29.468Z Has data issue: false hasContentIssue false

Laser-Assisted Dry Etching Ablation for Microstructuring of III-V Semiconductors

Published online by Cambridge University Press:  15 February 2011

J.J. Dubowski
Affiliation:
Institute for Microstructural Sciences, National Research Council of Canada, OTTAWA, Ontario K1A 0R6, Canada
M. Julier
Affiliation:
Institute for Microstructural Sciences, National Research Council of Canada, OTTAWA, Ontario K1A 0R6, Canada
G.I. Sproule
Affiliation:
Institute for Microstructural Sciences, National Research Council of Canada, OTTAWA, Ontario K1A 0R6, Canada
B. Mason
Affiliation:
Institute for Microstructural Sciences, National Research Council of Canada, OTTAWA, Ontario K1A 0R6, Canada
Get access

Abstract

Laser-assisted dry etching ablation (LADEA) has been reviewed with an emphasis on its applicability for the microstructuring of III-V semiconductor compounds. The method is based on the application of an excimer laser ( λ= 308 nm) for pulsed heating of a wafer which is placed in a stream of Cl2/He gas. Both the products of chemical reaction and the depth to which a laser-induced reaction takes place depend on laser fluence. This makes possible the ablation of a well defined volume of the material. Little or no structural damage to the surface is observed because ablation is carried out with laser fluences below those required to melt the matrix material. The laser fluence dependence of the etch rate indicates that the process is primarily temperature driven with a characteristic energy for desorption. We have investigated LADEA as a method for in-situ processing of III-V semiconductors and the fabrication of nanostructures. An atomic force microscopy study has shown that atomically smooth surfaces can be obtained if the etch rate is near 1/2 atomic layer per laser pulse. The lateral resolution of LADEA has been found to be at least 20 nm. This, as well as the results of in-situ photoluminescence and Auger electron spectroscopy measurements, indicate that LADEA can be used for the direct (photoresist-free) fabrication of high quality microstructures and, ultimately, for the nanostructuring of III-V semiconductor compounds.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Rothschild, M. and Ehrlich, D.J., J.Vac.Sci.Technol. B6. 1 (1988).Google Scholar
2 Zhang, S.K., Sugioka, K., Fan, J., Toyoda, K. and Zou, S.C., Appl. Phys. A58, 191 (1994).Google Scholar
3 Desmur, A., Bourguignon, B., Boulmer, J., Ozenne, J.-B., Budin, J.-P., Débarre, D. and Aliouchouche, A., J. Appl. Phys. 76, 3081 (1994).Google Scholar
4 Brunner, K., Abstreiter, G., Walther, M., Böhm, G. and Tränkle, G., Surf. Sci. 267, 218 (1992).Google Scholar
5 Iga, R., Sugiura, H. and Yamada, T., Appl. Phys. Lett. 61, 1424 (1992).Google Scholar
6 Ehrlich, D.J., Appl. Surface Sci. 69. 115 (1993).Google Scholar
7 Meguro, T., Hamagaki, M., Modaressi, S., Hara, T., Aoyagi, Y., Ishii, M. and Yamamoto, Y., Appl. Phys. Lett. 56, 1552 (1990).Google Scholar
8 Ishii, M., Meguro, T., Sugano, T., Gamo, K. and Aoyagi, Y., Appl. Surf. Sci. 86, 554 (1995).Google Scholar
9 Boulmer, J., Budin, J.-P., Bourguignon, B., Débarre, D. and Desmur, A., in: “Laser Ablation of Electronic Materials: Basic Mechanisms and Applications”, Ed. Fogarassy, E. and Lazare, S., Elsevier Science Publishers B.V., p. 239 (1992).Google Scholar
10 Maki, P.A. and Ehrlich, D.J., Appl. Phys. Lett 55. 91 (1989).Google Scholar
11 Meiler, J., Matz, R. and Haarer, D., Appl. Sur. Sci. 43, 416 (1989).Google Scholar
12 Donnelly, V.M. and Hayes, T.R., Appl. Phys. Lett. 57, 701 (1990).Google Scholar
13 Heydel, R., Matz, R. and Göpel, W., Appl. Surface Science 69, 38 (1993).Google Scholar
14 Bourne, O.L., Hart, D., Rayner, D.M. and Hackett, P.A., J. Vac. Sci. Technol. B11, 556 (1993).Google Scholar
15 Shih, M.C., Freiler, M.B., Scarmozzino, R. and Osgood, R.M. Jr., J. Vac. Sci. Technol. B13, 43 (1995).Google Scholar
16 Dubowski, J.J., Trans. Mat. Res. Soc. Jpn., 17, 333 (1994).Google Scholar
17 Dubowski, J.J., Compaan, A. and Prasad, M., Appl. Surface Sci., 86, 548 (1995).Google Scholar
18 Dubowski, J.J., Rosenquist, B., Lockwood, D.J., Labbé, H.J., Roth, A.P., Lacelle, C., Davies, M., Barber, R., Mason, B. and Sproule, G.I., J. Appl. Phys. 78, (1995).Google Scholar
19 Long, J.P., Goldenberg, S.S. and Kabler, M.N., Phys. Rev. Lett. 68. 1014 (1992).Google Scholar
20 Dubowski, J.J., Mater. Sci. Forum, vol. 173–174, 73 (1995).Google Scholar
21 Prasad, M., Dubowski, J.J. and Ruda, H.E., Proc. SPIE, 2403, 414 (1995).Google Scholar
22 Dubowski, J.J., Bielawski, M., Fallahi, M. and Mason, B., in: Laser in Microstructure Technology, LASER'95,12th International Trade Fair and International Congress, Munich, Germany, 1923 June, 1995.Google Scholar
23 Burgess, D. Jr., Stair, P.C. and Weitz, E., J. Vac. Sci. Technol. A4, 1362 (1986).Google Scholar
24 Tyndall, G.W. and Moylan, C.R., Appl. Phys. A50, 609 (1990).Google Scholar
25 McNevin, S.C., J. Vac. Sci. Technol. B4, 1203 (1986).Google Scholar
26 McNevin, S.C., J. Vac. Sci. Technol. B4, 1216 (1986).Google Scholar
27 Hawrylak, P., Private communication.Google Scholar
28 Tsang, W.T., Kapre, R. and Sciortino, P.F. Jr., Appl. Phys. Lett. 62, 2084 (1993).Google Scholar
29 Furuhata, N., Miyamoto, H., Okamoto, A. and Ohata, K., J. Appl. Phys. 65, 168 (1989)].Google Scholar
30 Young, J.F., Preston, J.S., van Driel, H.M. and Sipe, J.E., Phys. Rev. B27, 1155 (1983).Google Scholar
31 Clark, S.E. and Emmony, D.C., Phys. Rev. B40, 2031 (1989)].Google Scholar
32 Nagai, H. and Noguchi, Y., J. Appl. Phys. 50, 1544 (1979).Google Scholar
33 Suzuki, T. and Ogawa, M., Appl. Phys. Lett. 34, 447 (1979).Google Scholar
34 Lester, S.D., Kim, T.S. and Streetman, B.G., J. Appl. Phys. 60, 4209 (1986).Google Scholar
35 Ohtsuka, K., Ohishi, T., Abe, Y., Sugimoto, H. and Matsui, T., J. Appl. Phys. 70, 2361 (1991).Google Scholar