Hostname: page-component-7c8c6479df-ph5wq Total loading time: 0 Render date: 2024-03-28T09:26:31.481Z Has data issue: false hasContentIssue false

Laser Rapid Sintering of Metallo-Organic Derived Oxide Films

Published online by Cambridge University Press:  26 February 2011

Rong-Fuh Louh
Affiliation:
Department of Materials Science and Engineering, University of Illinois, Urbana, IL 61801
Relva C. Buchanan
Affiliation:
Department of Materials Science and Engineering, University of Illinois, Urbana, IL 61801
Get access

Abstract

Oxide films of ZrO2, Y2O3, yttria stabilized zirconia (YSZ), and high Tc superconducting YBa2Cu3O7-x and Bi-Sr-Ca-Cu-O films were produced by spin coating metallo-organic precursors onto Si, ZrO2 and MgO single crystal substrates. Densification of these oxide films, after pyrolysis of organic constituents, was achieved by scanning a Nd:YAG laser beam across the film surface. Surface morphology, microstructures, spatial grain size distribution, compositional variations, defects and physical properties of laser sintered films were characterized using SEM, EDS, TEM, SIMS, XRD and 4-point electrical resistivity probe. Laser processing parameters, deposited film thickness and organic burn-off showed strong influences on the film densification behavior. This paper focuses on pursuing optimum conditions for obtaining dense, uniform sintered patterns in oxide films and on understanding the film-substrate interaction and dynamics of nucleation and growth via the laser rapid sintering process.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Louh, R. F. and Buchanan, R. C., Mat. Res. Symp. Proc., 100 (1988) 65964Google Scholar
2. Louh, R. F. and Buchanan, R. C., J. Mater. Res., 5 [4] 841846 (1990)Google Scholar
3. Erhlich, D. J., Osgood, R. M. Jr., Deutsch, T. F., J. Vac. Sci. Technol. 21 [1] 2332 (1982)Google Scholar
4. Osgood, R. M. and Gilgen, H. H., Mat. Ann. Rev. Mater. Sci., 15 (1985) 54976Google Scholar
5. Gross, M. E., Applebaum, A., and Galagher, P. K., J. Appl. Phys., 61 [4] 16281632 (1987)Google Scholar
6. Turunen, M., Sensors and Actuators, 17 (1989) 7579 Google Scholar
7. Bauerler, D., Appl. Phys. A, 48 (1989) 527542 Google Scholar
8. Dye, R. C., Muenchausen, R. E., Nogar, N. S., Mukherjee, A., and Brueck, S. R., Appl. Phys. Lett., 57 [11] 11491151 (1990)Google Scholar
9. Mitsuishi, T., Okabe, K., and Sasaki, Y., Appl. Phys Lett.,41 [1] 8990 (1982)Google Scholar
10. Mitsuishi, et al., Japanese J. Appl. Phys., 26 [10] 18023 (1987)Google Scholar
11. Kasai, T., Ozaki, Y., Noda, H., Kawasaki, K., and Tanemoto, K., J. Am. Ceram. Soc., 72 [9] 17161718 (1989)Google Scholar
12. Breinan, E. M. and Kear, B. H., “Rapid solidification laser processing at high power density” in Laser Materials Processing, edited by Bass, M., North-Holland Publishing (1983), pp. 235295 Google Scholar
13. Mordike, B. L. and Bergman, H. W., Mat. Res. Sypm. Proc., 58 (1986) 313 Google Scholar
14. Vest, R. W. and Xu, J., IEEE Trans, on Ultrasonics and Frequency Control, 35 [6] 7117 (1988)Google Scholar
15. Davison, W. W. and Buchanan, R. C., Mat. Res. Soc. Symp.. Proc., 99 (1988) 289292 Google Scholar
16. Davison, W. W., Shyu, S. G., Roseman, R. D., and Buchanan, R. C., Mat. Res. Soc. Symp.. Proc., 121 (1988) 797802 Google Scholar