Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-26T17:57:44.737Z Has data issue: false hasContentIssue false

Laser MBE for Atomically Defined Ceramic Film Growth

Published online by Cambridge University Press:  15 February 2011

H. Koinuma
Affiliation:
Tokyo Institute of Technology, Research Laboratory of Engineering Materials, Nasgatsuta, Midori-ku, Yokohama, 226, Japan, koinumal@rlem.titech.ac.jp
M. Kawasaki
Affiliation:
Tokyo Institute of Technology, Research Laboratory of Engineering Materials, Nasgatsuta, Midori-ku, Yokohama, 226, Japan, koinumal@rlem.titech.ac.jp
M. Yoshimoto
Affiliation:
Tokyo Institute of Technology, Research Laboratory of Engineering Materials, Nasgatsuta, Midori-ku, Yokohama, 226, Japan, koinumal@rlem.titech.ac.jp
Get access

Abstract

Laser MBE is a process especially useful for epitaxial layer-by-layer growth of ceramic thin films directly from sintered ceramic targets. By employing high vacuum MBE conditions, the process has a restriction in the controllability of chemical composition, e.g. nonstoi chiometry in oxides and nitrides, as compared with conventional pulsed laser deposition, but instead gains the possibility of in situ monitoring of surface reaction on an atomic scale by RHEED. Ever since our first success in observing RHEED intensity oscillation for CeO2 film growth on Si(l11), we have verified the molecular layer epitaxy by laser MBE for perovskite oxides (SrTiO3, BaTiO3, SrVO3 ,etc) and infinite-layer cuprates MCuO2 (M= Sr, Ba, Ca) on SrTiO3 substrates as well as for oxide and nitride films on Si substrates. Key factors to design the laser MBE system, operation parameters, and recent experimental results are presented and discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Esaki, L. and Tsu, R., IBMJ. Res. Dev. 14, 61 (1970).Google Scholar
Cheung, J. T., Niizawa, G., Moyle, J., Ong, N. P., Paine, B. M., and Vreeland, T. Jr., J. Vac. Sci. Technol., A4, 2086 (1986).Google Scholar
Bednorz, J. G. and Müller, K. A., Z. Phys. B, 64, 189 (1986).Google Scholar
Koinuma, H., MRS Bulletin, 19 (9), 21 (1994).Google Scholar
H. Koinuma, , M. Kawasaki, , M. Funabashi, , T. Hasegawa, , K. Kishio, , K. Kitazawa, , K. Fueki, , and S. Nagata, , J. Appl. Phys., 62, 1524 (1987).Google Scholar
Venkatesan, T., Wu, X. D., Dutta, B., Inam, A., Hegde, M. S., Hwang, D. M., Chang, C. C., Nazar, L. and Wilkens, B., Appl. Phys. Lett, 54, 581 (1986).Google Scholar
Koinuma, H., Bull. Mat. Sci., 18, 435 (1995).Google Scholar
Hashimoto, H., Kishio, K., and koinuma, H., Jpn. J. Appl. Phys., 30, 1685 (1991).Google Scholar
Koinuma, H. and Yoshimoto, M., Appl. Surf. Sci., 75, 308 (1994).Google Scholar
Laser MBE system of our design is commercially available from Pascal Co., Ltd. Yoshimoto, M., Ohkubo, H., Kanda, N., Koinuma, H., Jpn. J. Appl. Phys., 31, 3664 (1992).Google Scholar
Yoshimoto, M., Ohkubo, H., Kanda, N., Koinuma, H., Horiguchi, K., Kumagai, M., Hirai, K., Appl. Phys. Lett., 61, 2659 (1992)Google Scholar
Kawasaki, M., Takahashi, K., Maeda, T., Tsuchiya, R., Shinohara, M., Ishiyama, O., Yonezawa, T., Yoshimoto, M., Koinuma, H., Science 266, 1540 (1994).Google Scholar
The stepped substrates are commercially available from Shinko-sya Co., Ltd.Google Scholar
Yoshimoto, M., Maeda, T., Shimozono, K., Koinuma, H., Shinohara, M., Ishiyama, O., Ohtani, F., Appl. Phys. Lett., 65, 3197 (1994)Google Scholar
Yoshimoto, M., Maeda, T., Ohnishi, T., Koinuma, H., Ishiyama, O., Shinohara, M., Kubo, M., Miura, R., and Miyamoto, A., Appl. Phys. Lett. 67, 2615 (1995).Google Scholar
Kawasaki, M., Ohtomo, A., Takahashi, K., Yoshimoto, M., and Koinuma, H., Appl. Surf. Sci., in press.Google Scholar
Koinuma, H., Nagata, H., Tsukahara, T., Gonda, S., Yoshimoto, M.. Appl. Phys. Lett. 58, 2027 (1991).Google Scholar
Terashima, T., Bando, Y., Iijima, K., Yamamoto, K., Hirata, K., Kamigaki, K., and Terauchi, H.: Phys. Rev. Lett. 65, 2684 (1990).Google Scholar
Kawasaki, M., Kanda, N., Tsuchiya, R., Nakano, K., Ohtomo, A., Takahashi, K., Kubota, H., Shitraishi, T., and Koinuma, H., Advances in Superconductivity, 8, in press.Google Scholar
Koinuma, H., Yoshimoto, M., Nagata, H., and Tsukahara, T., Solid State Comn., 80, 9 (1991).Google Scholar
Yoshimoto, M., Nagata, H., Tsukahara, T. and Koinuma, H., Jpn. J. Appl. Phys., 29, L1199 (1990)Google Scholar
Lee, M. B., Kawasaki, M., Yoshimoto, M., Kumagai, M., and Koinuma, H., Jpn. J. Appl. Phys., 33, 6308 (1994).Google Scholar
Lee, M. B., Kawasaki, M., Yoshimoto, M., and Koinuma, H., Appl. Phys. Lett., 66, 1331 (1995).Google Scholar
Yoshimoto, M., Shimozono, K., Maeda, T., Ohnishi, T., Kumagai, M., Chikyow, T., Ishiyama, O., Shinohara, M., and Koinuma, H., Jpn. J. Appl. Phys., 34 (1995), L688.Google Scholar