Hostname: page-component-77c89778f8-rkxrd Total loading time: 0 Render date: 2024-07-23T05:43:37.850Z Has data issue: false hasContentIssue false

Laser Investigations of the Dynamics of Molecule-Surface Interaction

Published online by Cambridge University Press:  21 February 2011

J. Hager
Affiliation:
Max-Planck-Institut fur Quantenoptik, D-8046, Garching
H. Walther
Affiliation:
Sektion Physik der Universitat Munchen, D-8046, Garching Federal Republic of Germany
Get access

Abstract

The internal energy distribution of NO molecules scattered from different solid surfaces (Pt(111), graphite, and Pt(111) covered with various adlayers) was investigated by the laser-induced fluorescence method. In the case of the NO/graphite system, moreover, the velocity distribution of the scattered molecules could be measured in a time-offlight experiment. The rotational energy distribution, which can always be described as a Boltzmann distribution, exhibits only partial accommodation to the surface temperature for all surfaces investigated. The measurements of the velocity of the NO molecules scattered from the graphite surface show only a small influence of the surface temperature on the average velocity and on the velocity distribution. Furthermore, the measured velocity distribution is independent of the final rotational state of the scattered molecules. On the basis of these results, a rather complete description of the behavior of the NO molecules during the scattering process can be presented.

Type
Research Article
Copyright
Copyright © Materials Research Society 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. a) Frenkel, F., Hager, J., Krieger, W., Walther, H., Campbell, C. T., Ertl, G., Kuipers, H., and Segner, J., Phys. Rev. Lett. 46, 152 (1981).Google Scholar
1. b) Frenkel, F., Hager, J., Kreiger, W., Walther, H., Ertl, G., Segner, J., and Vielhaber, W., Chem. Phys. Lett. 90, 225 (1982).Google Scholar
1. c) Ertl, G., Robota, H., Segner, J., Vielhaber, W., Frenkel, F., Hager, J., Krieger, W., and Walther, H.. Surf. Sci. 131, 273 (1983).Google Scholar
2. a) McClelland, G. M., Kubiak, G. D., Rennagel, H. G., and Zare, R. N., Phys. Rev. Lett. 46, 831 (1981).Google Scholar
2. b) Kubiak, G. D., Hurst, J. E. Jr., Rennagel, H. G., McClelland, G. M., and Zare, R. N., submitted for publication.Google Scholar
3. a) Kleyn, A. W., Luntz, A. C., and Auerbach, D. J., Phys. Rev. Lett. 47, 1169 (1981).Google Scholar
3. b) Luntz, A. C., Kleyn, A. W., and Auerbach, D. J., J. Chem. Phys. 76, 737 (1982).Google Scholar
3. c) Luntz, A. C., Kleyn, A. W., and Auerbach, D. J., Phys. Rev. B 25, 4273 (1982).Google Scholar
3. d) Kleyn, A. W., Luntz, A. C., and Auerbach, D. J., Surf. Sci. 117, 33 (1982).CrossRefGoogle Scholar
4. a) Asscher, M., Guthrie, W. L., Lin, T. H., and Somorjai, G. A., Phys. Rev. Lett. 49, 76 (1982).Google Scholar
4. b) Asscher, H., Guthrie, W. L., Lin, T. H., and Somorjai, G. A., J. Chem. Phys. 78, 6992 (1983).CrossRefGoogle Scholar
5. Zacharias, H., Loy, M. M. T. and Roland, P. A., Phys. Rev. Lett. 49, 1790 (1982).Google Scholar
6. Hayden, J. S. and Diebold, G. J., J. Chem. Phys. 77, 4767 (1982).Google Scholar
7. a) Hepburn, J. W., Northrup, F. J., Ogram, G. L., Polanyi, J. C., and Williamson, J. H., Chem. Phys. Lett. 85, 127 (1982).Google Scholar
7. b) Ettinger, D., Honma, K., Keil, M., and Polanyi, J. C., Chem. Phys. Lett. 87, 413 (1981).Google Scholar
8. Cavanagh, R. R. and King, D. S., Phys. Rev. Lett. 47, 1829 (1981).Google Scholar
9. Misewich, J., Plum, C. N., Blyholder, G., Houston, P. L., and Merrill, R. P., J. Chem. Phys. 78, 4245 (1983).Google Scholar
10. a) Tevault, D. E., Talley, L. D., and Lin, M. C., J. Chem. Phys. 72, 3314 (1980).CrossRefGoogle Scholar
10. b) Talley, L. D., Sanders, W. A., Bogan, D. J., and Lin, M. C., Chem. Phys. Lett. 78, 500 (1981).Google Scholar
11. Cross, J. B. and Lurie, J. B., Chem. Phys. Lett. 100, 174 (1983).Google Scholar
12. Guthrie, W. L., Lin, T. H., Ceyer, S. T., and Somorjai, G. A., J. Chem. Phys. 76, 6398 (1982).Google Scholar
13. Hager, J. and Walther, H., publication in preparation.Google Scholar
14. Golomb, D., Good, R. E., and Brown, R. F., J. Chem. Phys. 52, 1545 (1970).Google Scholar
15. a) Logan, R. N. and Stickney, R. E., J. Chem. Phys. 44, 195, (1966).Google Scholar
15. b) Nichols, W. L. and Weare, J. H., J. Chem. Phys. 63, 379 (1975).Google Scholar
16. Gadzuk, J. W., Landman, U., Kuster, E. J., Cleveland, C. L., and Barnett, R. N., Phys. Rev. Lett. 49, 426 (1982).Google Scholar
17. Bialkowski, S. E., J. Chem. Phys. 78, 600 (1983).CrossRefGoogle Scholar
18. Campbell, C. T., Ertl, G., and Segner, J., Surf. Sci. 115, 309 (1982).Google Scholar