Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-24T13:49:12.826Z Has data issue: false hasContentIssue false

Laser Deposition of Gold

Published online by Cambridge University Press:  25 February 2011

Jeffrey A. Sell
Affiliation:
Physics Department, General Motors Research Laboratories, Warren, MI, 49090-9055
Martin S. Meyer
Affiliation:
Physics Department, General Motors Research Laboratories, Warren, MI, 49090-9055
Gregory P. Meisner
Affiliation:
Physics Department, General Motors Research Laboratories, Warren, MI, 49090-9055
Get access

Abstract

Metallic gold was deposited on several different substrates by laser pyrolysis of a goldcontaining ink. The gold was deposited in the form of lines by translating the substrate during laser pyrolysis; linewidths ranged from 10 Am to 1.5 mm. This process was performed in open air. Prior to annealing, the films contain 40 to 50 % carbon impurity and the resistivity is extremely high. After a 1 hour anneal in air, the carbon content is reduced to < 5 %, and the resistivity is reduced to roughly 13 times bulk gold. Further improvement may be possible with a different annealing schedule.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Jan, R.Y. and Allen, S.D., Proc. SPIE 459, Laser Assisted Deposition, Etching, and Doping, 71 (1984).Google Scholar
2. Baum, T.H. and Jones, C. R., Appl. Phys. Lett., 47, 538 (1985).CrossRefGoogle Scholar
3. Baum, T.H. and Jones, C.R., J. Vac. Sci. Technol. B, 4, 1187 (1986).CrossRefGoogle Scholar
4. Baum, T.H. and Marinero, E.E., Appl. Phys. Lett., 49, 1213 (1986)CrossRefGoogle Scholar
5. Kodas, T.T., Baum, T.H., and Comita, P.B., J. Appl. Phys., 62, 281 (1987).CrossRefGoogle Scholar
6. Kodas, T.T., Baum, T.H., and Comita, P.B., Matl. Res. Soc. Symp. Proc., 76, 57 (1987).Google Scholar
7. Baum, T.H., Matl. Res. Soc. Symp. Proc., 76, 141 (1987).Google Scholar
8. Fisanick, G.J, Hopkins, J.B., Gross, M.E., Fennell, M.D., and Schones, K.J., Appl. Phys. Lett., 46, 1184 (1985).CrossRefGoogle Scholar
9. Gross, M.E., Fisanick, G.J., Gallagher, P.K., Schones, K.J., and Fennell, M.D., Appl. Phys. Lett., 47, 923 (1985).CrossRefGoogle Scholar
10. Houlding, V.H., Clements, N.S., Beeson, K.W., and West, G.A., in Photon, Beam, and Plasma Stimulated Chemical Processes at Surfaces, edited by Donnelly, V.M., Herman, I.P., and Hirose, M., (Matl. Res. Soc. Symp. Proc., 75, Pittsburgh, PA 1986) p. 165.Google Scholar
11. Houlding, V.H., Clements, N.S., and Beeson, K.W., J. Appl. Phys., 62, 1070 (1987).CrossRefGoogle Scholar
12. Ye, Y. and Hunsperger, R.G., Appl. Phys. Lett., 51, 2136 (1987).CrossRefGoogle Scholar
13. Gutfield, R.J. von, Gelchinski, M.H., Romankiw, L.T., and Vigliotti, D.R., Appl. Phys. Lett., 43, 876 (1983).CrossRefGoogle Scholar
14. Gutfield, R.J. von, Tynan, E.E., Melcher, R.L., and Blum, S.E., Appl. Phys. Lett., 35, 651 (1979).CrossRefGoogle Scholar
15. Bauerle, D., in Laser Processing and Diagnostics, Bauerle, D., Ed., Springer-Verlag, Berlin, 1984, p. 166.CrossRefGoogle Scholar
16. Liquid bright gold fire cone 19 available from Johnson Matthey, Inc., 1397 King Road West, West Chester, PA, 19380.Google Scholar
17. Waldo, R.A., “Proceedings of the Microbeam Analysis 1988 Conference,” Microbeam Analysis Society, Milwaukee, Aug. 7, 1988.Google Scholar
18. Ho, C.Y. et al. , J. Phys. Chem Ref. Data, 12, 183 (1983).CrossRefGoogle Scholar
19. Meaden, G.T., “Electrical Resistance of Metals,” (Plenum Press, New York, 1965), p. 138. Also see K. Fuchs, Proc. Cambridge Phil. Soc., 34, 100 (1938).CrossRefGoogle Scholar
20. Cline, H.E. and Anthony, T.R., J. Appl. Phys., 48, 3895 (1977).CrossRefGoogle Scholar