Hostname: page-component-848d4c4894-tn8tq Total loading time: 0 Render date: 2024-07-02T02:12:32.449Z Has data issue: false hasContentIssue false

Laser Deposited Epitaxial Oxide Heterostructures as Prototype Ferroelectric Optical Waveguides

Published online by Cambridge University Press:  01 January 1992

D. K. Fork
Affiliation:
Xerox Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, CA 94304
G. B. Anderson
Affiliation:
Xerox Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, CA 94304
Get access

Abstract

The pulsed laser deposition process is a powerful tool for investigating prototype epitaxial structures. This report outlines recent developments in epitaxial structures which may usefully serve as ferroelectric optical waveguides. Emphasis is given to structures on semiconductor substrates, motivated by hybrid optical/semiconductor integration. Earlier pulsed laser deposited structures, such as BaTiO3/MgO/GaAs (100) are discussed in conjunction with current results on Z-lithium niobate on GaAs (111)A and GaAs (111)B. BaTiO3/MgO/GaAs (100) grows with cube-on-cube crystallography. The epitaxial system z-lithium niobate on GaAs (111)A and GaAs (111)B has been demonstrated both with and without intermediate MgO (111) layers. The in-plane epitaxial relationships are LiNbO3 [110] // GaAs [211] and [211] indicating the existence of 180° boundaries in the LiNbO3 with and without the MgO layer, which grows cube-on-cube with the GaAs. Out-of-plane texture is typically 1.0° and 1.2° for the MgO and LiNbO3 layers respectively. In-plane texture is typically 2.8° and 4.5° for MgO and LiNbO3 layers respectively. These and similar epitaxial systems may be useful for monolithic electro-optic or frequency doubling applications in conjunction with semiconductor laser sources.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Wegner, A. B., Brueck, S. R. J. and Wu, A. Y., Ferroelectrics, 116, 195 (1991).Google Scholar
2. Rou, S. H., Graettinger, T. M., Chow, A. F., Soble, C. N., Lichtenwalner, D. J., Auciello, O. and Kingon, A. I., Mat. Res. Soc. Symp. Proc. 243, 81 (1992).Google Scholar
3. Marcuse, Dietrich, Bell Sys. Tech. J. p. 3187, Dec. 1969.Google Scholar
4. Ramesh, R., Chan, W. K., Wilkens, B., Gilchrist, H., Sands, T., Tarascon, J. M., Keramidas, V. G., Fork, D. K., Lee, J., and Safari, A., Appl. Phys. Lett. 61, 1537 (1992).Google Scholar
5. Fork, D. K., Ponce, F. A., Tramontana, J. C., and Geballe, T. H., Appl. Phys. Lett. 58 2294 (1991).Google Scholar
6. Nashimoto, K., Fork, D. K. and Geballe, T. H., Appl. Phys. Lett. 60, 1199 (1992).Google Scholar
7. Schwyn Thony, S. and Lehmann, H. W., Appl. Phys. Lett. 61, 373 (1992).Google Scholar
8. Hsu, Wei-Yung and Raj, Rishi, Appl. Phys. Lett. 60, 3105 (1992).Google Scholar
9. Rost, T. A., Lin, H. and Rabson, T. A., Appl. Phys. Lett. 59, 3654 (1991).Google Scholar
10. Spring Thorpe, A. J. and Mandeville, P., J. Vac. Sci. Technol. B6, 754 (1988).Google Scholar
11. Shibata, Y., Kaya, K., Akashi, K., Kanai, M., Kawai, T. and Kawai, S., Appl. Phys. Lett. 61, 1000 (1992).Google Scholar
12. Matsunaga, H., Ohno, H., Okamoto, Y. and Nakajima, Y., J. Cryst. Growth 99, 630 (1990).Google Scholar
13. Kado, Y. and Arita, Y., J. Appl. Phys. 61, 2398 (1987).Google Scholar
14. Weis, R. S. and Gaylord, T. K., Appl. Phys. A 37, 191 (1985).Google Scholar
15. De Sario, M., Armenise, M. N., Canali, C., Carnera, A., Mazzoldi, P., and Celotti, G., J. Appl. Phys. 57, 1482 (1985).Google Scholar