Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-26T16:13:19.235Z Has data issue: false hasContentIssue false

Large Scale Production of Carbon Nanotube Transistors: A Generic Platform for Chemical Sensors

Published online by Cambridge University Press:  15 February 2011

Jean-Christophe P. Gabriel*
Affiliation:
Nanomix, Inc. Emeryville CA-94608, USA, jcgabriel@nano.com
Get access

Abstract

We report our work on the fabrication of nanotube-based field effect transistors (NTFET). Nanotubes were grown by chemical vapor deposition using various approaches, including a new formulation of nanotube growth catalysts that were directly patterned using UV lithography. We also report NTFETs based on randomly oriented nanotube networks that have a modulation of one. Finally, we report that a systematical and statistical characterization of millions of devices has led to the development of a robust process that may be useful in large scale production of reproducible, nanotube-based FETs, which, in turn, can be used as a generic platform for chemical sensors.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] a) Tans, S. J.; Verschueren, A. R. M.; Dekker, C. Nature 1998, 393, 49; b) Martel, R.; Schmidt, T.; Shea H. R.; Hertel, T.; Avouris, P. Appl. Phys. Lett. 1998, 73, 2447.Google Scholar
[2] Collins, P. G., Bradley, K. Ishigami, Zettl, A. Science 2000, 287, 1801.Google Scholar
[3] Cui, Y., Wei, Q. Q., Park, H. K., Lieber, C. M. Science 2001, 293, 1289 Google Scholar
[4] Errachid, A., Bausells, J., Zine, N., Jaffrezic, H., Martelet, C., Jaffrezic-Renault, N., Charbonnier, M. Mat. Science Eng. C 2002, 21, 9.Google Scholar
[5] Fritz, J., Baller, M. K., Lang, H. P., Rothuizen, H., Vettiger, P., Meyer, E., Güntherodt, H.J., Gerber, C., Gimzewski, J. K. Science 2000, 288 316.Google Scholar
[6] McKendry, R., Zhang, J., Arntz, Y., Strunz, T., Hegner, M., Lang, H. P., Baller, M. K., Certa, U., Meyer, E., Güntherodt, H.J., Gerber, C. Proc. Natl Acad. Sci. USA 2002, 99, 9783.Google Scholar
[7] Hagleitner, C., Hierlemann, A., Lange, D., Kummer, A., Kerness, N., Brand, O., Baltes, H., Nature 2001, 414, 293.Google Scholar
[8] Star, A., Gabriel, J.C.P., Bradley, K., Grüner, G. Nano Lett. 2003, 3, 459.Google Scholar
[9] Chen, Y.; Ohlberg, D. A. A.; Li, X.; Stewart, D. R.; Williams, R. S.; Jeppesen, J. O.; Nielsen, K. A.; Stoddart, J. F.; Olynick, D. L.; Anderson, E. Appl. Phys. Lett. 2003, 82, 1610.Google Scholar
[10] Besteman, K., Lee, J.O, Wiertz, F. G. M., Heering, H. A., Dekker, C. Nanoletters 2003, 3 ASAP:10.1021/nl034139uGoogle Scholar
[11] Gabriel, J.C.P, Davidson, P. Topic Curr. Chem. 2003, 226, 119.Google Scholar
[12] Melosh, N. A., Boukai, A., Diana, F., Gerardot, B., Badolato, A., M., Petroff P., Heath, J. R. Science 2003, 300, 112.Google Scholar
[13] Pan, Z. W.; Xie, S. S.; Chang, B. H.; Wang, C. Y.; Lu, L.; Liu, W.; Zhou, W. Y.; Li, W. Z.; Qian, L. X. Nature 1998, 394, 631.Google Scholar
[14] Li, W. Z.; Xie, S. S.; Qian, L. X.; Chang, B. H.; Zou, B. S.; Zhou, W. Y.; Zhao, R. A.; Wang, G. Science 1996, 274, 1701.Google Scholar
[15] Franklin, N. R. Li, Y. M. Chen, R. J. Javey, A. Dai, H. J App. Phys. Lett. 2001, 79, 4571.Google Scholar
[16] Cheung, C. L. Kurtz, A. Park, H. Lieber, C.M. J. Phys. Chem. B. 2002 106, 2429.Google Scholar
[17] Kwan, S., Sun, C., Star, A., Gabriel, J.C.P. to be submittedGoogle Scholar
[18] Ong, K. G., Zeng, K., Grimes, C A. IEEE Sensors Journal 2002, 2, 82.Google Scholar
[19] Avouris, P. Acc. Chem. Res., 2002, 35, 1026.Google Scholar
[20] Dresselhaus, M. S., Dresselhaus, G., Jorio, A., Souza Filho, A. G., Pimenta, M. A., Saito, R.Single Nanotube Raman Spectroscopy.” Acc. Chem. Res., 2002, 35, 1070.Google Scholar
[21] Fuhrer, M. S., Nygard, J., Shih, L., Forero, M., Yoon, Y. G., Mazzoni, M. S. C., Choi, H. J., Ihm, J., Louie, S. G., Zettl, A., McEuen, P. L., Science 2000, 288, 494.Google Scholar
[22] If the distribution is 1/3 metallic and 2/3 semiconducting nanotubes, as it is theoritically accepted, then the probability of having a metal-metal junction is only 0.11. Multiplication of the number of interconnects therefore greatly decrease the probability of having metallic electronic pathways.Google Scholar
[23] Gabriel, J.C. P., Bradley, K., Collins, P. G., Patent Pending.Google Scholar
[24] Bradley, K., Cumings, J., Star, A., Gabriel, J.C. P., Grüner, G., Nano Lett. 2003, 3 639.Google Scholar