Skip to main content Accessibility help

Large magnetic permeability and resonant frequency of CoFe nanofilms electrodeposited via optimizing plating solution parameters based on electrochemistry mechanisms

  • BaoYu Zong (a1), YuPing Wu (a1), Nguyen Nguyen Phuoc (a1), Pin Ho (a2) and FuSheng Ma (a1)...


A simple methodology to electrodeposit thin soft CoFe films with desirable microwave properties from simple salt solutions at room temperature is demonstrated. Plating solution parameters have diverse influences on real potentials of ion reductions and deposition behavior of the FeCo crystals, consequently affecting largely the particle size, crystal structure and chemical composition of the film fabricated. This in turn determines their static magnetism and dynamic microwave properties. Through optimizing solution additive, concentration and temperature from electrodeposition mechanism, the as-prepared nanofilms possess a low coercivity of < 30 Oe, moderate anisotropy of 60-90 Oe, high crystallinity and magnetic moment of ≥ 2.0 T, and hence readily display an ultrahigh magnetic permeability (up to 1128) and resonant frequency (up to 2.1 gigahertz) simultaneously, as well as other desirable physico-chemical properties. Thus the nanofilms can be applied to high gigahertz frequency applications.


Corresponding author


Hide All
1. Liu, Y., Sellmyer, D. J. and Shindo, D., Handbook of Advanced Magnetic Materials (Springer Verlag, NY: Spin 11097730, New York, 2006) pp. 418455.
2. Cooper, E. I., Bonhôte, C., Heidmann, J., Hsu, Y., Kern, P., Lam, J. W., Robertson, N., Romankiw, L. T., and Xu, H., IBM J. Res. Dev. 49, 103126 (2005).
3. Zong, B. Y., Han, G. C., Zheng, Y. K., Guo, Z. B., Li, K. B., Wang, L., Qiu, J. J., Liu, Z. Y., An, L. H., Luo, P., Li, H. L., and Liu, B., IEEE Trans. Magn. 42, 27752777 (2006).
4. Mizutani, S., Yokoshima, T., Nam, H. S., and Nakanishi, T., IEEE T. Magn. 36, 25392541 (2000).
5. Rozanov, K. N., Li, Z. W., Chen, L. F., and Koledintseva, M. Y., J Appl. Phys. 97, 1390513907 (2005).
6. Schlesinger, M. and Paunovic, M., Modern Electroplating, 5th ed. (John Wiley & Sons Ltd, Weinheim, Germany, 2010).
7. Rhen, F. M. F., McCloskey, P., O’Donnell, T., and Roy, S., J. Magn. Magn. Mater. 320, 819822 (2008).
8. Zong, B. Y., Pong, Z.W., Wu, Y. P., Ho, P., Qiu, J. J., Kong, L. B., Wang, L., and Han, G. C., J. Mater. Chem. 21, 1604216048 (2011).
9. Zong, B. Y., Han, G. C., Qiu, J. J., Guo, Z. B., Wang, L., Yeo, W. K., and Liu, B., Res. Lett. Phys. Chem. Article ID 3429761, Published online (May 2008).
10. Zong, B. Y., Wu, Y. P., Ng, W. B., Phuoc, N. N., Li, Z. W., Han, G. C., Qiu, J. J., Yang, Y., Ho, P., Luo, P., and Wong, S. K., The 8th Pacific Rim International Congress on Advanced Materials and Processing, 1-7 Aug. 2013, pp 1–9. Wiley Online Library (6 Sep. 2013).
11. Acher, O. and Dubourg, S., A generalization of Snoek’s law to ferromagnetic films and composites (CEA Le Ripault, BP16: 37260 Monts, France, 2007) pp. 122.
12. Phuoc, N. N. and Ong, C. K., Adv. Mater. DOI 10.1002/adma.201203995, 15 (2012).



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed