Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-26T23:23:25.300Z Has data issue: false hasContentIssue false

Large magnetic permeability and resonant frequency of CoFe nanofilms electrodeposited via optimizing plating solution parameters based on electrochemistry mechanisms

Published online by Cambridge University Press:  22 May 2014

BaoYu Zong*
Affiliation:
Temasek Laboratories, National University of Singapore, 5A Engineering Drive 1, Singapore 117411. tslzb@nus.edu.sg.
YuPing Wu
Affiliation:
Temasek Laboratories, National University of Singapore, 5A Engineering Drive 1, Singapore 117411. tslzb@nus.edu.sg.
Nguyen Nguyen Phuoc
Affiliation:
Temasek Laboratories, National University of Singapore, 5A Engineering Drive 1, Singapore 117411. tslzb@nus.edu.sg.
Pin Ho
Affiliation:
Department of Materials Science and Engineering, National University of Singapore, Singapore 117576.
FuSheng Ma*
Affiliation:
Temasek Laboratories, National University of Singapore, 5A Engineering Drive 1, Singapore 117411. tslzb@nus.edu.sg.
*
Get access

Abstract

A simple methodology to electrodeposit thin soft CoFe films with desirable microwave properties from simple salt solutions at room temperature is demonstrated. Plating solution parameters have diverse influences on real potentials of ion reductions and deposition behavior of the FeCo crystals, consequently affecting largely the particle size, crystal structure and chemical composition of the film fabricated. This in turn determines their static magnetism and dynamic microwave properties. Through optimizing solution additive, concentration and temperature from electrodeposition mechanism, the as-prepared nanofilms possess a low coercivity of < 30 Oe, moderate anisotropy of 60-90 Oe, high crystallinity and magnetic moment of ≥ 2.0 T, and hence readily display an ultrahigh magnetic permeability (up to 1128) and resonant frequency (up to 2.1 gigahertz) simultaneously, as well as other desirable physico-chemical properties. Thus the nanofilms can be applied to high gigahertz frequency applications.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Liu, Y., Sellmyer, D. J. and Shindo, D., Handbook of Advanced Magnetic Materials (Springer Verlag, NY: Spin 11097730, New York, 2006) pp. 418455.CrossRefGoogle Scholar
Cooper, E. I., Bonhôte, C., Heidmann, J., Hsu, Y., Kern, P., Lam, J. W., Robertson, N., Romankiw, L. T., and Xu, H., IBM J. Res. Dev. 49, 103126 (2005).CrossRefGoogle Scholar
Zong, B. Y., Han, G. C., Zheng, Y. K., Guo, Z. B., Li, K. B., Wang, L., Qiu, J. J., Liu, Z. Y., An, L. H., Luo, P., Li, H. L., and Liu, B., IEEE Trans. Magn. 42, 27752777 (2006).CrossRefGoogle Scholar
Mizutani, S., Yokoshima, T., Nam, H. S., and Nakanishi, T., IEEE T. Magn. 36, 25392541 (2000).CrossRefGoogle Scholar
Rozanov, K. N., Li, Z. W., Chen, L. F., and Koledintseva, M. Y., J Appl. Phys. 97, 1390513907 (2005).CrossRefGoogle Scholar
Schlesinger, M. and Paunovic, M., Modern Electroplating, 5th ed. (John Wiley & Sons Ltd, Weinheim, Germany, 2010).CrossRefGoogle Scholar
Rhen, F. M. F., McCloskey, P., O’Donnell, T., and Roy, S., J. Magn. Magn. Mater. 320, 819822 (2008).CrossRefGoogle Scholar
Zong, B. Y., Pong, Z.W., Wu, Y. P., Ho, P., Qiu, J. J., Kong, L. B., Wang, L., and Han, G. C., J. Mater. Chem. 21, 1604216048 (2011).CrossRefGoogle Scholar
Zong, B. Y., Han, G. C., Qiu, J. J., Guo, Z. B., Wang, L., Yeo, W. K., and Liu, B., Res. Lett. Phys. Chem. Article ID 3429761, Published online (May 2008).Google Scholar
Zong, B. Y., Wu, Y. P., Ng, W. B., Phuoc, N. N., Li, Z. W., Han, G. C., Qiu, J. J., Yang, Y., Ho, P., Luo, P., and Wong, S. K., The 8th Pacific Rim International Congress on Advanced Materials and Processing, 1-7 Aug. 2013, pp 1–9. Wiley Online Library (6 Sep. 2013).Google Scholar
Acher, O. and Dubourg, S., A generalization of Snoek’s law to ferromagnetic films and composites (CEA Le Ripault, BP16: 37260 Monts, France, 2007) pp. 122.Google Scholar
Phuoc, N. N. and Ong, C. K., Adv. Mater. DOI 10.1002/adma.201203995, 15 (2012).Google Scholar