Hostname: page-component-7c8c6479df-27gpq Total loading time: 0 Render date: 2024-03-28T20:05:41.842Z Has data issue: false hasContentIssue false

Large Area Chemical Bath Deposition of CdS on Cu(InGa)Se2

Published online by Cambridge University Press:  31 January 2011

Nirav D Vora
Affiliation:
nirav.vora@nrel.gov, National Renewable Energy Laboratory, 1617 Cole Blvd, Mailstop 3219, Golden, Colorado, 80401, United States, 303-384-7837
Ingrid Repins
Affiliation:
Ingrid.Repins@nrel.gov, National Renewable Energy Laboratory, Golden, Colorado, United States
Steve Robbins
Affiliation:
Steven.Robbins@nrel.gov, National Renewable Energy Laboratory, Golden, Colorado, United States
Johnathan Mann
Affiliation:
Jonathan.Mann@nrel.gov, National Renewable Energy Laboratory, Golden, Colorado, United States
Hector Castenada
Affiliation:
hcast@heateflex.com, Heateflex Corporation, Arcadia, California, United States
Brian Armstrong
Affiliation:
BArmstrong@heateflex.com, Heateflex Corporation, Arcadia, California, United States
Get access

Abstract

Chemical bath deposition (CBD) is a commonly used method of depositing cadmium sulfide (CdS) films for photovoltaic application. The method is based on decomposition of a sulfur source in an alkaline solution of a cadmium source on the surface of the Cu(In,Ga)Se2 (CIGS) substrate. On the lab scale the CdS film is deposited by submerging a 1” square CIGS substrate in a heated beaker containing the chemical bath. This batch processing method is the one used for record-performing devices. There is an ongoing effort at the National Renewable Energy Laboratory to scale-up the CBD process to deposit CdS films on 6” square substrate. Efforts are focused at designing both batch and flow reactors for depositing uniform, device quality CdS films on larger substrates. Batch reactor designs involve reproducing the deposition process in the beaker on a bigger scale with minimal chemical waste, while flow reactors are designed for continuous processing, such as encountered in roll-to-roll manufacturing lines.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Kwietniak, M. Warminski, T. Beaulieu, R. Kazmerski, L. and Loferski, J. J.Rf-Sputtering of Low Resistivity Cds Thin Thin-Films,” Journal of the Electrochemical Society, vol. 129, pp. C95–C95, 1982.Google Scholar
[2] Muneeb-Ur-Rehman, A. K. S. A., Shafique, M. ALI, Z. Maqsood, A. Journal of Materials Science Letters, vol. 122, p. 127, 2003.Google Scholar
[3] Waters, D. C. J. Raftery, J. and O'Brien, P., Chem. Mater., vol. 16, p. 3289, 2004.Google Scholar
[4] Radding, J. B. M. a. S. B.Spray Pyrolysis Processing,” Ann. Rev. Mater. Sci., vol. 12, pp. 81101, 1982.Google Scholar
[5] Voss, Y. J. C. C. Subramanian, S. Ryu, S. O. Lee, T.J. and Chang, C.H. J., Journal of Electrochemical Society, vol. 151, p. C655, 2004.Google Scholar
[6] Chang, P. H. M. Y. Y. J. Morrone, A. A. Han, S.Y. Ryu, S. O. Lee, T.J. and Chang, C.H. Electrochem. Solid-State Lett., vol. 9, p. G174, 2006.Google Scholar
[7] Contreras, M. A. Romero, M. J. Hasoon, B. T. E. Noufi, R. Ward, S. and Ramanathan, K.Optimization of CBD CdS process in high high-efficiency Cu(In,Ga)Se fficiency Se-2-based solar cells,” Thin Solid Films, vol. 403, pp. 204211, FEB 1 2002.Google Scholar
[8] Dona, J. M. and Herrero, J.Chemical Bath Deposition of CdS Thin Films: An Approach to the Chemical Mechanism Through Study of the Film Microstructure,” Journal of The urnal Electrochemical Society, vol. 144, pp. 40814091, 1997.Google Scholar
[9] Stolt, W. N. S. a. L. “Cu(InGa)Se Se2 solar cells,” in Handbook of Photovoltaic Science and Engineering Engineering, Hegedus, A. L. a. S. Ed.: John Wiley & Sons, 2003, pp. 567616.Google Scholar
[10] Kessler, M. R. J. K, Hariskos, D. Ruhle, U. Menner, R. Schock, H.W. in essler, Proceedings of the 23rd IEEE PVSC PVSC, Louisville, KY, USA, 1993, p. 447.Google Scholar
[11] Lincot, R. O. B. D. Vedel, J. Ruckh, M. Kessler, J. Velthaus, K.O. Hariskos, D. Schock, H.W. in Proceedings of the 11th EC PVSEC PVSEC, Montreux, Switzerland, 1992, p. 870.Google Scholar
[12] Ramanathan, R. B. K. Granata, J. Webb, J. Niles, D. Contreras, M.A. Wiesner, H. Hasoon, F. Noufi, R. in Proceedings of the 26th IEEE PVSC PVSC, Anaheim, CA, 1997, p. 319.Google Scholar
[13] Ramanathan, H. W. K. Asher, S. Niles, D. Ni, Bhattacharya, R. Keane, J. Contreras, M.A. Noufi, R., in Proceedings of the 2nd World Conference, PVSEC PVSEC, Vienna, Austria, 1998, p. 477.Google Scholar
[14] Nakada, T.Nano Nano-structural investigations on Cd Cd-doping into Cu(In,Ga)Se Se-2 thin films by chemical bath deposit deposition process,” Thin Solid Films, vol. 361, pp. 346352, FEB 21 2000.Google Scholar
[15] Repins, I. Contreras, M. A. Egaas, B. DeHart, C. Scharf, J. Perkins, C. L. To, B. and Noufi, R.19.9% 19.9%-efficient ZnO/CdS/CuInGaSe2 solar cell with 81.2% fill factor,” Progress in Phot Photovoltaics, ovoltaics, vol. 16, pp. 235239, May 2008.Google Scholar