Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-27T04:16:18.424Z Has data issue: false hasContentIssue false

Langmuir-Blodgett Films of Squarylium Dye J-Aggregates Exhibiting Femtosecond Optical Responses

Published online by Cambridge University Press:  10 February 2011

M. Furuki
Affiliation:
The FESTA Laboratories, 5-5 Tokodai, Tsukuba, Ibaraki 300-26, Japan, furuki@festa.or.jp
H. Kawashima
Affiliation:
Electrotechnical Laboratory, 1-1-4 Umezono, Tsukuba, Ibaraki 305, Japan
T. Tani
Affiliation:
Corporate Res. Labs., Fuji Xerox Co. Ltd., 430 Sakai, Nakaimachi, Kanagawa 259-01, Japan
L. S. Pu
Affiliation:
Corporate Res. Labs., Fuji Xerox Co. Ltd., 430 Sakai, Nakaimachi, Kanagawa 259-01, Japan
Get access

Abstract

J-aggregates of squarylium dyes in Langmuir films have been found to exhibit highly efficient and ultrafast nonlinear optical properties. We established a novel method for making Langmuir- Blodgett (LB) films of J-aggregates with a single absorption band at 784 nm. Deposition of the LB-films was carried out under excess compression of the Langmuir films at a constant speed. Coating the surface of the LB-film with a glassy poly-perfluorocarbon was found to enhance and stabilize the formation of J-aggregates. Characterization of morphology using a near-field scanning optical microscope (NSOM) showed that this LB-film has a highly ordered structure comprising 2- dimensional domains of J-aggregates. We also observed nonlinear-optical responses from this LBfilm. Ultrafast decay of absorption change (250 fs) with quite low saturation energy (3.4 μJ/cm2•pulse) was observed in femtosecond pump-probe measurements. These results suggest highly delocalization of excited states in the J-aggregates of this LB-film with the 2-dimensional mono-molecular layer structure which initially formed in the Langmuir film.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Jelly, E. E., Nature 138, 1009 (1936).Google Scholar
2 Fidder, H., Knoester, J., and Wiersma, D. A., Chem. Phys. Letters 171, 529 (1990).Google Scholar
3 Durrant, J. R., Knoester, J., and Wiersma, D. A., Chem. Phys. Letters 222, 450 (1994).Google Scholar
4 Spano, F. C. and Mukamel, S., J. Chem. Phys. 95, 7526 (1991).Google Scholar
5 Kopainsky, B. and Kaiser, W., Chem. Phys. Lett. 88, 357 (1982).Google Scholar
6 Kobayashi, S. and Sasaki, F., Nonlinear Optics 4, 305 (1993).Google Scholar
7 Minoshima, K., Taiji, M., Misawa, K., and Kobayashi, T., Chem. Phys. Lett. 218, 67 (1994).Google Scholar
8 Minoshima, K., Taiji, M., Ueki, A., Miyano, K., and Kobayashi, T., Nonlinear Optics 14, 39 (1995).Google Scholar
9 Betiz, E., Trautman, J. K., Herris, T. D., Weiner, J. S., and Kostelak, L. R., Science 251, 1468 (1991).Google Scholar
10 Higgins, D. A. and Barbara, P. F., J. Phys. Chem. 99, 3 (1995).Google Scholar
11 Furuki, M., Kim, S., Pu, L. S., Nakahara, H., and Fukuda, K., J. Chem. Soc. Japan Chem. Ind. Chem. 10, 1121 (1990).Google Scholar
12 Furuki, M., Pu, L. S., Sasaki, F., Kobayashi, S., and Tani, T., Mat. Res. Soc. Symp. Proc. 488, 777 (1998).Google Scholar
13 Furuki, M., Pu, L. S., Sasaki, F., Kobayashi, S., and Tani, T., Appl. Phys. Lett. 72, 21, 2648 (1998).Google Scholar
14 Furuki, M., Pu, L. S., Sasaki, F., Kobayashi, S., and Tani, T., Mol. Cryst. Liq. Cryst. 316. 67 (1998).Google Scholar