Hostname: page-component-848d4c4894-4rdrl Total loading time: 0 Render date: 2024-06-24T11:26:57.496Z Has data issue: false hasContentIssue false

Lab-on-Glass System for DNA Analysis using Thin and Thick Film Technologies

Published online by Cambridge University Press:  31 January 2011

Domenico Caputo
Affiliation:
caputo@die.uniroma1.it, Sapienza University of Rome, Electronic Engineering, via Eudossiana 18, Rome, 00184, Italy
Matteo Ceccarelli
Affiliation:
ceccarelli@die.uniroma1.it, Sapienza University of Rome, Electronic Engineering, Rome, Italy
Giampiero de Cesare
Affiliation:
decesare@die.uniroma1.it, Sapienza University of Rome, Electronic Engineering, Rome, Italy
Augusto Nascetti
Affiliation:
augusto.nascetti@uniroma1.it, Sapienza University of Rome, Aerospace and Astronautics, Rome, Italy
Riccardo Scipinotti
Affiliation:
scipinotti@die.uniroma1.it, Sapienza University of Rome, Electronic Engineering, Rome, Italy
Get access

Abstract

In this paper, we present a compact lab-on-chip system suited for label-free DNA analysis. The system can be fabricated on a conventional microscope glass slide using thin-film and thick-film technologies. It integrates a heating chamber, an electrowetting-based droplet handling system and a hydrogenated amorphous silicon (a-Si:H) photosensor array for DNA detection. At this stage of research we have designed and tested the individual functional units. The heating chamber incorporates a thin metal film heater optimized for uniform temperature distribution on a 1cm2 area. A forward-biased a-Si:H p-i-n junction is used for temperature monitoring, achieving a linear temperature dependence with -3.3 mV/K sensitivity. The droplet-handling unit, relying on the electrowetting method, is designed to move the sample from the heating chamber to the sensor array. The unit includes a set of metal pads beneath a layer of PDMS that provides both the electric insulation of the electrodes and the hydrophobic surface needed by the electrowetting technique. The UV sensor array allows measuring the DNA absorbance variation at 254nm related to the hybridization between probe-molecules contained in the sample and reference target molecules immobilized on the sensor surface. A preliminary test to detect the hybridization between a 25-mer single-stranded oligonucleotides and denaturated pBR 322 4162-mer single-stranded oligonucleotides has been carried out successfully.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 AR, Kopf-Sill (2002), “Successes and challenges of lab-on-a-chip”, Lab Chip 2:42N–47N10.1039/b206777nGoogle Scholar
2 Manz, A.; Graber, N.; Widmer, H. M. Sens. Actuators 1990, B1, 244248.10.1016/0925-4005(90)80209-IGoogle Scholar
3 Moore, S.K., “Making Chips”, IEEE Spectrum, pp. 5460, (2001)10.1109/6.908856Google Scholar
4 Lagally, Eric T and Mathies, Richard A, J. Phys. D: Appl. Phys. 37 (2004) R245–R26110.1088/0022-3727/37/23/R01Google Scholar
5 Meldrum, D., Genome Res., 21, pp- 2024, (1999)Google Scholar
6 Berggren, C., Bjarnason, B., Johansson, G., Electroanalisys 13, pp. 173180, (2001)10.1002/1521-4109(200103)13:3<173::AID-ELAN173>3.0.CO;2-B3.0.CO;2-B>Google Scholar
7 Fritz, J., Baller, M. K., Lang, H. P., Rothuizen, H., Vettiger, P., Meyer, E., Guntherodt, H.J., Gerber, Ch., Gimzewski, J. K., Science 288, pp. 316318 (2000)10.1126/science.288.5464.316Google Scholar
8 Cesare, G. de, Caputo, D., Nascetti, A., Guiducci, C., Riccò, B., Applied Physics Letters, (2006), vol. 88, pp. 083904 10.1063/1.2179608Google Scholar
9http://www.bmglabtech.com/db_assets/applications/downloads/applications/168-dnaquantitation- absorbance.pdfGoogle Scholar
10 Berge, B., Acad, C. R.. Sci. Ser. II: Mec., Phys., Chim., Sci. Terre Univers, 1993, 317, 157163.Google Scholar
11 Vallet, M., Berge, B. and Vovelle, L., Polymer, 1996, 37, 24562470.10.1016/0032-3861(96)85360-2Google Scholar
12 Baviere, Roland, Boutet, Jerome, Fouillet, Yves, Microfluid Nanofluid (2008) 4:287294.10.1007/s10404-007-0173-4Google Scholar
13 Ding, Hui-Jiang; Liu, Kan; Zhao, Li-Bo; Zeng, Qian; Guo, Zhi-Xiao; Guo, Feng; Zhao, Xing-Zhong, Bioinformatics and Biomedical Engineering, 2007. ICBBE 2007. The 1st International Conference on Volume, Issue, 6-8 July 2007 Page(s):13171320.Google Scholar
14 Abdelgawad, Mohamed and Wheeler, Aaron R., Adv. Mater, 1007, 19, 133137.Google Scholar
15 Caputo, D., Cesare, G. de, Nascetti, A., Negri, R., Scipinotti, R., IEEE Sensors Journal, vol. 7 (9), pp. 12741280 (2007)10.1109/JSEN.2007.901257Google Scholar
16 Caputo, D. Cesare, G. de Nascetti, A. Tucci, M., IEEE Trans. of Electron Device, vol.55(1), NUM:, p. 452456 (2008).10.1109/TED.2007.910571Google Scholar
17 Fixe, F., Faber, A., Goncalves, D., Prazeres, D. M. F., Cabeca, R., Chu, V., Ferreira, G. N. and Conde J, P 2002, Mater. Res. Soc. Symp. Proc. 723 O2.3.110.1557/PROC-723-O2.3Google Scholar