Skip to main content Accessibility help

Krypton and Helium Irradiation Damage in Yttria-stabilised Zirconia

  • M. Gilbert (a1), C. Davoisne (a2), M. C. Stennett (a3), N. C. Hyatt (a3), N. Peng (a4), C. Jeynes (a4) and W. E. Lee (a1)...


A candidate matrix material for inert matrix fuel (IMF), yttria-stabilised zirconia (YSZ) has been doped with Nd3+ as a surrogate for Pu3+. To simulate and assess the effects of fission gas accommodation and alpha decay on the microstructure, samples of (Y0.1425,Nd0.05,Zr0.8075)O1.904 have been irradiated with 2 MeV 36Kr+ ions, at fluences of 1×1014 and 5×1015 cm−2, and 200 keV 4He+ ions at fluences of 1×1014, 5×1015 and 1×1017 cm-2. Analysis by transmission electron microscopy (TEM) of thin sections prepared by focussed ion beam (FIB) milling revealed damage was only observed at the highest 36Kr+ and 4He+ fluences. Monte Carlo simulations using the TRIM code showed that it is only at these fluences that the level of atomic displacements was sufficient to result in observable defect cluster formation within the material.



Hide All
1. Burakov, B. E., Ojovan, M. I. and Lee, W. E., Crystalline Materials for Actinide Immobilisation, (Imperial College Press, London, 2011) p. 61.
2. Nuttall, W. J., Farnan, I., Konings, R. J. M. and Hamilton, D. J., Prog. Nucl. Energy 49, 568 (2007).
3. Schram, R. P. C. and Klaassen, F. C., Prog. Nucl. Energy 49, 617 (2007).
4. Schram, R. P. C., van der Laan, R. R., Klaassen, F. C., Bakker, K., Yamashita, T. and Ingold, F., J. Nucl. Mater. 319, 118 (2003).
5. Akie, H., Takano, H. and Anoda, Y., J. Nucl. Mater. 274, 139 (1999).
6. Yamashita, T., Kuramoto, K., Nitani, N., Nakano, Y., Akie, H., Nagashima, H., Kimura, Y. and Ohmichi, T., J. Nucl. Mater. 320, 126 (2003).
7. Degueldre, C. and Hellwig, C. H., J. Nucl. Mater. 320, 99 (2003).
8. Sickafus, K. E., Matzke, H., Yasuda, K., Chodak, P., Verrall, R. A., Lucuta, P. G., Andrews, H. R., Turos, A., Fromknecht, R. and Baker, N. P., Nucl. Inst. Meth. B. 141, 358 (1998).
9. Yasuda, K., Kinoshita, C., Matsumura, S. and Ryazanov, A. I., J Nucl. Mater. 319, 74 (2003).
10. Xie, D. Z., Zhu, D. Z., Cao, D. X. and Zhou, Z. Y., Nucl. Inst. Meth. B. 132, 425 (1997).
11. Wang, L. M., Wang, S. X., Zhu, S. and Ewing, R. C., J Nucl. Mater. 289, 122 (2001).
12. van Hassel, B. A. and Burggraaf, A. J., App. Phys. A. 53, 155 (1991).
13. Wang, L. M., Wang, S. X. and Ewing, R. C., Phil. Mag. Let. 80, 341 (2000).
14. Sickafus, K. E., Matzke, H., Hartmann, T., Yasuda, K., Valdez, J. A., Chodak, P., Nastasi, M. and Verrall, R. A., J Nucl. Mater. 274, 66 (1999).
15. Aït Abderrahim, H., Sobolev, V. and Malambu, E., Technical Meeting on use of LEU in ADS, (IAEA, Vienna) 2005.
16. Stennett, M.C., Hyatt, N.C., Reid, D.P., Maddrell, E.R., Peng, N., Jeynes, C., Kirkby, K.J. and Woicik, J.C., Mater. Res. Soc. Symp. Proc. 2009, 1124.
17. Wang, L. M., Zhu, S., Wang, S. X. and Ewing, R. C., Mater. Res. Soc. Symp. Proc. 663, 293 (2001).



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed