Hostname: page-component-848d4c4894-nmvwc Total loading time: 0 Render date: 2024-06-29T15:52:12.898Z Has data issue: false hasContentIssue false

Krypton and Helium Irradiation Damage in Yttria-stabilised Zirconia

Published online by Cambridge University Press:  19 January 2011

M. Gilbert
Affiliation:
Centre for Advanced Structural Ceramics, Department of Materials, Imperial College London, Exhibition Road, London, SW7 2AZ, UK.
C. Davoisne
Affiliation:
Laboratoire de Réactivité et Chimie des Solides, CNRS-UMR 6007, Université de Picardie Jules Verne, 33 rue Saint-Leu, 80039 Amiens, France.
M. C. Stennett
Affiliation:
Immobilisation Science Laboratory, University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield, S1 3JD, UK.
N. C. Hyatt
Affiliation:
Immobilisation Science Laboratory, University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield, S1 3JD, UK.
N. Peng
Affiliation:
Surrey Ion Beam Centre, Nodus Laboratory, University of Surrey, Guildford, Surrey, GU2 7XH, UK.
C. Jeynes
Affiliation:
Surrey Ion Beam Centre, Nodus Laboratory, University of Surrey, Guildford, Surrey, GU2 7XH, UK.
W. E. Lee
Affiliation:
Centre for Advanced Structural Ceramics, Department of Materials, Imperial College London, Exhibition Road, London, SW7 2AZ, UK.
Get access

Abstract

A candidate matrix material for inert matrix fuel (IMF), yttria-stabilised zirconia (YSZ) has been doped with Nd3+ as a surrogate for Pu3+. To simulate and assess the effects of fission gas accommodation and alpha decay on the microstructure, samples of (Y0.1425,Nd0.05,Zr0.8075)O1.904 have been irradiated with 2 MeV 36Kr+ ions, at fluences of 1×1014 and 5×1015 cm−2, and 200 keV 4He+ ions at fluences of 1×1014, 5×1015 and 1×1017 cm-2. Analysis by transmission electron microscopy (TEM) of thin sections prepared by focussed ion beam (FIB) milling revealed damage was only observed at the highest 36Kr+ and 4He+ fluences. Monte Carlo simulations using the TRIM code showed that it is only at these fluences that the level of atomic displacements was sufficient to result in observable defect cluster formation within the material.

Type
Articles
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Burakov, B. E., Ojovan, M. I. and Lee, W. E., Crystalline Materials for Actinide Immobilisation, (Imperial College Press, London, 2011) p. 61.Google Scholar
2. Nuttall, W. J., Farnan, I., Konings, R. J. M. and Hamilton, D. J., Prog. Nucl. Energy 49, 568 (2007).Google Scholar
3. Schram, R. P. C. and Klaassen, F. C., Prog. Nucl. Energy 49, 617 (2007).Google Scholar
4. Schram, R. P. C., van der Laan, R. R., Klaassen, F. C., Bakker, K., Yamashita, T. and Ingold, F., J. Nucl. Mater. 319, 118 (2003).Google Scholar
5. Akie, H., Takano, H. and Anoda, Y., J. Nucl. Mater. 274, 139 (1999).Google Scholar
6. Yamashita, T., Kuramoto, K., Nitani, N., Nakano, Y., Akie, H., Nagashima, H., Kimura, Y. and Ohmichi, T., J. Nucl. Mater. 320, 126 (2003).Google Scholar
7. Degueldre, C. and Hellwig, C. H., J. Nucl. Mater. 320, 99 (2003).Google Scholar
8. Sickafus, K. E., Matzke, H., Yasuda, K., Chodak, P., Verrall, R. A., Lucuta, P. G., Andrews, H. R., Turos, A., Fromknecht, R. and Baker, N. P., Nucl. Inst. Meth. B. 141, 358 (1998).Google Scholar
9. Yasuda, K., Kinoshita, C., Matsumura, S. and Ryazanov, A. I., J Nucl. Mater. 319, 74 (2003).Google Scholar
10. Xie, D. Z., Zhu, D. Z., Cao, D. X. and Zhou, Z. Y., Nucl. Inst. Meth. B. 132, 425 (1997).Google Scholar
11. Wang, L. M., Wang, S. X., Zhu, S. and Ewing, R. C., J Nucl. Mater. 289, 122 (2001).Google Scholar
12. van Hassel, B. A. and Burggraaf, A. J., App. Phys. A. 53, 155 (1991).Google Scholar
13. Wang, L. M., Wang, S. X. and Ewing, R. C., Phil. Mag. Let. 80, 341 (2000).Google Scholar
14. Sickafus, K. E., Matzke, H., Hartmann, T., Yasuda, K., Valdez, J. A., Chodak, P., Nastasi, M. and Verrall, R. A., J Nucl. Mater. 274, 66 (1999).Google Scholar
15. Aït Abderrahim, H., Sobolev, V. and Malambu, E., Technical Meeting on use of LEU in ADS, (IAEA, Vienna) 2005.Google Scholar
16. Stennett, M.C., Hyatt, N.C., Reid, D.P., Maddrell, E.R., Peng, N., Jeynes, C., Kirkby, K.J. and Woicik, J.C., Mater. Res. Soc. Symp. Proc. 2009, 1124.Google Scholar
17. Wang, L. M., Zhu, S., Wang, S. X. and Ewing, R. C., Mater. Res. Soc. Symp. Proc. 663, 293 (2001).Google Scholar