Skip to main content Accessibility help

Kinetics of spinodal decomposition and strain energy effects in Cu-Ni(Fe) nanolaminates

  • Alan F. Jankowski (a1)


The phase transformation of spinodal decomposition proceeds without nucleation and is affected by the alloy composition, temperature, interfaces and gradient energy, as well as the presence of lattice strain. As a consequence, a coherent spinodal can be depressed well below the chemical spinodal within the miscibility gap. Phase separation from a solid solution within the spinodal leads to the formation of characteristic composition wavelengths. In the nickel-based alloy system, a nanolaminate structure is used to initially create an artificial composition fluctuation with unique nanoscale wavelengths. The direct measurement of diffusivity at low temperatures in Cu-Ni and Cu-Ni(Fe), from the spinodal towards room temperature, requires sensitivity to the nanoscale fluctuations in composition. For this purpose, x-ray diffraction scans are used to assess changes in the short-range order of the composition fluctuation and the corresponding changes in the gradient energy, from which an evaluation of lattice distortion effects reveals a peak in strain energy for 2-3 nm composition wavelengths.



Hide All
1. Cahn, J.W. and Hilliard, J.E., J. Chem. Phys. 28, 258 (1958).
2. Hillert, M.A., Acta Metall. 9, 525 (1961).
3. Cahn, J.W., Acta Metall. 9, 795 (1961).
4. Cahn, J.W., Acta Metall. 10, 179 (1962).
5. Cahn, J.W., Acta Metall. 10, 907 (1962).
6. Khachaturyan, A.G., Phys. Met. Metallog. 13, 493 (1962).
7. Khachaturyan, A.G., Sov. Phys. Solid State 5, 9 (1963).
8. Cahn, J.W., The Effects of an Applied Stress on Spinodal Decomposition, Report No. 64-RL-3561M (General Electric Research Lab, Schenectady, NY, 1964).
9. Khachaturyan, A.G., Sov. Phys. Crystallogr. 10, 248 (1965).
10. Khachaturyan, A.G., Sov. Phys. Solid State 9, 2040 (1968).
11. Bradley, A.J., Cox, W.F., Goldschmidt, H.J., J. Inst. Met. 67, 189 (1941).
12. Hilliard, J.E., in Phase Transformations, edited by Aaronson, H.I. (ASM, Metals Park, OH, 1970) pp. 497559.
13. Cook, H.E. and Hilliard, J.E., J. Applied Phys. 40, 2191 (1969).
14. Paulson, W.M. and Hilliard, J.E., J. Applied Phys. 48, 2117 (1977).
15. Tsakalakos, T., Thin Solid Films 86, 79 (1981).
16. Jankowski, A.F. and Tsakalakos, T., Metall. Trans. A 20, 357 (1989).
17. Jankowski, A.F. and Saw, C.K., Scripta Mater. 51, 119 (2004).
18. Jankowski, A.F., Defect Diffusion Forum 266, 13 (2007).
19. Cook, H.E., De Fontaine, D., and Hilliard, J.E., Acta Metall. 17, 765 (1969) .
20. Khachaturyan, A.G. and Pokrovskii, B.I., Prog. Mater. Sci. 29, 1 (1985).
21. Khachaturyan, A.G., Theory of Structural Transformations in Solids (John Wiley and Sons, New York, 1983) pp. 128136.
22. Gust, W., Wachtel, E., Frühauf, B., and Predel, B., in Phase Transformations in Solids edited by Tsakalakos, T. ( Mater. Res. Soc. Symp. Proc. 21, North-Holland, Amsterdam, 1984) pp. 461466.
23. Poerschke, R., Wagner, W., and Wollenberger, H., J. Phys. F: Met. Phys. 16, 421 (1986).
24. Butler, E.P. and Thomas, G., Acta Metall. 18, 347 (1970).
25. Tsakalakos, T., Scripta Metall. 20, 471 (1986).



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed