Hostname: page-component-5c6d5d7d68-lvtdw Total loading time: 0 Render date: 2024-08-19T22:20:29.963Z Has data issue: false hasContentIssue false

Kinetics of MgO Dissolution and Buffering of Fluids in the Waste Isolation Pilot Plant (Wipp) Repository

Published online by Cambridge University Press:  10 February 2011

Valerie Monastra
Affiliation:
now at: Department of Geological Sciences, Cornell University, Ithaca, NY 14853
D. E. Grandstaff
Affiliation:
Department of Geology, Temple University, Philadelphia, PA 19122(grand @vm.temple.edu)
Get access

Abstract

DOE has proposed to add MgO to backfill in the WIPP repository to stabilize pH and reduce gas pressures and spallation. Experiments show that MgO dissolution rates are proportional to surface area, nearly independent of pH, and decrease with increasing dissolved NaCl. The probable repository MgO dissolution rate will be ≤ 10 to 20 μmol m2 min−1. Simulations indicate that MgO dissolution will buffer pH and provide stabilizing cement; however, under highly reducing conditions MgO will not control total gas pressures. Adding oxidizing agents or materials containing oxidized species, for example anhydrite, to the backfill, might control gas pressures.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Sandia, , In: Powers, D. W., Lambert, S. J., Shafer, S. E., Hill, L. R., Weart, WE. D. (eds)., DOE Report AT(29-1)-789; 2 volumes (1978).Google Scholar
2. CTAC, Expert Elicitation on WIPP Waste Particle Size Distribution(s) during the 10,000-year regulatory post-closure period. Carlsbad Technical Assistance Contractor, 75 p (1997).Google Scholar
3. Papenguth, H. W., Krumhansl, J. L., Bynum, R. V., Nowak, E. J., Wang, Y., Kelly, J. W., and Linarez-Royce, N. J., Sandia National Laboratories, Albuquerque, NM, Technical Report, 23 April 1997, SWCF-A, WPO# 44544 (1997).Google Scholar
4. Plummer, L. N., Parkhurst, D. L., Fleming, G. W., and Dunkle, S. A., Geol, U. S.. Surv. Water-Resources Investigations Report 88-4153 (1988).Google Scholar
5. Robinson, R. A. and Stokes, R. H., Electrolyte Solutions, 2nd ed. Academic, New York (1970).Google Scholar
6. Drever, J. I., The Geochemistry of Natural Waters, Prentice-Hall, New York (1997).Google Scholar
7. Telander, M. R. and Westerman, R. E.. SAND96-2538, UC-721. Sandia National Laboratories, Albuquerque, NM (1996).Google Scholar
8. Brush, L. H., SAND90-0266. Sandia National Laboratories, Albuquenque, NM (1990).Google Scholar
9. Lindberg, R. D. and Runnells, D. D. (1984). Science, 225, 925927.Google Scholar
10. Gillow, J. B., Francis, A. J., Dodge, C. J., Harris, R., Beveridge, T. J., Brady, P. V., and Papenguth, H. W.. This volume..Google Scholar
11. King, F., Kolar, M., Stroes-Gascoyne, S., Bellingham, P., Chu, J., , J. and Dawe, P.V.. This volume.Google Scholar