Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-27T04:57:12.519Z Has data issue: false hasContentIssue false

Kinetics of Ge Segregation in the Presence of Sb During Molecular Beam Epitaxy

Published online by Cambridge University Press:  22 February 2011

S. Fukatsu
Affiliation:
Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, 4–6–1 Komaba, Meguro-ku, Tokyo 153, Japan
K. Fujita
Affiliation:
Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, 4–6–1 Komaba, Meguro-ku, Tokyo 153, Japan
H. Yaguchi
Affiliation:
Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, 4–6–1 Komaba, Meguro-ku, Tokyo 153, Japan
Y. Shiraki
Affiliation:
Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, 4–6–1 Komaba, Meguro-ku, Tokyo 153, Japan
R. Ito
Affiliation:
Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, 4–6–1 Komaba, Meguro-ku, Tokyo 153, Japan
Get access

Extract

Kinetics of Ge segregation during molecular beam epitaxial growth is described. It is shown that the Ge segregation is self-limited in Si epitaxial overlayers due to a high concentration effect when the Ge concentration exceeds 0.01 monolayer (ML). As a result, segregation profiles of Ge are found to decay non-exponentially in the growth direction. This unusual Ge segregation was found to be suppressed with an adlayer of strong segregant, Sb, during the kinetic MBE growth. We develop a novel scheme to realize sharp Si/Ge interfaces with strong segregante. Lower limit of the effective amount of Sb for this was found to be 0.75 ML.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Eberl, K., Krötz, G., Zachai, R., and Abstreiter, G., J. Phys. Colloq. C (Paris) 5, 329 (1987).Google Scholar
2 Abstreiter, G., Eberl, K., Freiss, E., Wegsheider, W., and Zachai, R., J. Cryst. Growth 21, 431 (1989).Google Scholar
3 Iyer, S. S., Tsang, J. C., Copel, M. W., Pukite, P. R., and Tromp, R. M., Appl. Phys. Lett. 54, 219 (1989).Google Scholar
4 Copel, M., Reuter, C., Kaxiras, E., and Tromp, R. M., Phys. Rev. Lett. 62, 632 (1989).Google Scholar
5 Zalm, P. C., van de Walle, G. F. A., Gravensteijn, D. J., and van Gorkum, A. A., Appl. Phys. Lett. 51, 2520 (1989).Google Scholar
6 Croke, E. T., McGill, T. C., Hauenstein, R. J., and Miles, R. H., Appl. Phys. Lett. 50, 367 (1990).Google Scholar
7 Nakagawa, K., and Miyao, M., Ext. Abs. of the 22nd Conf. on Solid State Devices and Materials, (Sendai, 1990) pp.913.Google Scholar
8 Fujita, K., Fukatsu, S., Yaguchi, H., Igarashi, T., Shiraki, Y., and Ito, R., Jpn. J. Appl. Phys. 22, 1981 (1990); (unpublished).Google Scholar
9 Copel, M., Reuter, C., Horn von Hoegen, M., and Tromp, R. M., Phys. Rev. B 42, 11682 (1990).Google Scholar
10 Harris, J. J., Ashenford, D. E., Foxon, C. T., Dobson, P. J., and Joyce, B. A., Appl. Phys. A 22, 87 (1984).Google Scholar
11 Barnett, S. A., and Greene, J. E., Surf. Sci. 111, 67 (1985).Google Scholar
12 Jorke, H., Surf. Sci. 122, 569 (1988).Google Scholar
13 Kristyan, S., and Giber, J., Surf. Sci. 224, 476 (1989).CrossRefGoogle Scholar
14 Rockett, A., Drummond, T. J., Greene, J. E., and Morkoc, H., Appl. Phys. Lett. 53, 7085 (1982).Google Scholar
15 Fukatsu, S., Fujita, K., Yaguchi, H., Shiraki, Y., and Ito, R. (unpublished).Google Scholar
16 Presting, H., Kibbel, H., Kasper, E., and Jorke, H., J. Appl. Phys. 68, L5653 (1990).CrossRefGoogle Scholar