Skip to main content Accessibility help

Kinetic Studies of Nanoscale Crystallization in Electronic Materials

  • C. Hayzelden (a1) (a2) and J. L. Batstone (a3)


We report a kinetic analysis of low-temperature NiSi2-mediated crystallization of amorphous Si by in situ transmission electron microscopy. The initiation of crystallization by formation of crystalline Si on buried NiSi2 precipitates is shown to have an activation energy of 2.8±0.7eV. Crystallization of the amorphous Si via migrating precipitates of NiSi2 occurs with an activation energy of 2.0±0.2eV. The significance of these activation energies is discussed in terms of possible atomistic mechanisms of crystalline Si initiation and subsequent growth. Amorphous Si is reported to crystallize at temperatures as low as 450°C.



Hide All
1. Murarka, S.P., Silicides for VLSI Applications (Academic Press, Orlando, Florida) 1983.
2. Wagner, R.S. and Ellis, W.C., Appl. Phys. Lett. 4, 89 (1964).
3. Cammarata, R.C., Thompson, C.V., Hayzelden, C. and Tu, K.N., J. Mater. Res. 5, 2133 (1990).
4. Hayzelden, C. and Batstone, J.L., in Proc. 49th Meeting of the Microscopy Society of America, eds. Bailey, G W. and Hall, E.L. (San Francisco Press, CA, 1991) pp. 826827.
5. Hayzelden, C., Batstone, J.L. and R Cammarata, C., Appl. Phys. Lett. 60, 225 (1992).
6. Hayzelden, C. and Batstone, J.L., in Proc. 50th Meeting of the Microscopy Society of America eds. Bailey, G.W., Bentley, J. and Small, J.A. (San Francisco Press, CA. 1992) pp. 13521353.
7. Hayzelden, C. and Batstone, J.L., J. Appl. Phys. 73, 8279 (1993).
8. Batstone, J.L. and Hayzelden, C., in Proc. 8th Oxford Conf. Microsc. Semicond. Mater. eds. Cullis, A G. and Staton-Bevan, A., (Inst. Phys. Conf. Ser. 134: Sect. 4, London, 1993) pp. 165172.
9. Batstone, J.L. and Hayzelden, C., in Polycrystalline Semiconductors III - Physics and Technology, Solid State Phenomena Vols 37–38, eds. Strunk, H.P., Werner, J.H., Fortin, B. and Bonnaud, O., (Scitec Publications, Switzerland, 1994) pp 257268.
10. Hayzelden, C. and Batstone, J.L. in Crystallization in Amorphous Materials, eds. Libera, M., Haynes, T.E., Cebe, P. and Dickinson, J.E. Jr. (Mater. Res. Soc. Proc. 321, Pittsburgh, PA, 1994) pp 579584.
11. Mohadjeri, B., Linnros, J., Svensson, B.G. and Ostling, M., Phys. Rev. Lett. 68, 1872 (1992).
12. Erokhin, Y.N., Grotzschel, R., Oktyabrsky, S.R., Roorda, S., Sinke, W. and Vyatkin, A.F., Mats. Sci. and Eng. B12, 103 (1992).
13. Hempel, T., Schoenfeld, O. and Veit, P. in Beam-Solid Interactions: Fundamentals and Applications, eds. by Nastasi, M., Harriott, L.R., Herbots, N. and Averback, Re S. (Mater. Res. Soc. Proc. 279, Pittsburgh, PA, 1993) pp. 267272.
14. Kuznetsov, A. Yu., Khodos, I.I., Mordkovich, V.N., Vyatkin, A.F. and Chichenin, N.G., Nucl. Instr. Meth. B 80/81, 990 (1993).
15. Kuznetsov, A.Yu., Khodos, I.I., Mordkovich, V.N. and Vyatkin, A.F., Appl. Surf. Sci. 73, 203 (1993).
16. Kuznetsov, A.Yu., Mordkovich, V.N., Vyatkin, A.F. and Khodos, I.I., in Proc. 8th Oxford Conf. Microsc. Semicond. Mater., eds. Cullis, A.G. and Staton-Bevan, A., (Inst. Phys. Conf. Ser. 134: Section 4, London, 1993) pp. 191194.
17. Erokhin, Y.N., Hong, F., Pramanick, S., Rozgonyi, G.A., Patnaik, B.K. and White, C.W., Appl. Phys. Lett. 63, 3173 (1993).
18. Ashtikar, M.S. and Sharma, G.L., J. Appl. Phys. 78, 913 (1995).
19. Lee, S-W., Jeon, Y-C. and Joo, S-K., Appl. Phys. Lett. 66, 1671 (1995).
20. Hayzelden, C. and Batstone, J.L., to be published.
21. Mayer, J.W., Eriksson, L., Picraux, S.T. and Davies, J.A., Can. J. Phys. 45, 663 (1968).
22. Olson, G. L. and Roth, J.A., Mater. Sci. Rep. 3, 1 (1988).
23. Csepregi, L., Kennedy, E.F., Gallaher, T. and Mayer, J.W., J. Appl. Phys. 48 4234 (1977).
24. Donovan, E.P., Spaepen, F., Poate, J.M and Jacobson, D.C., Appl. Phys. Lett. 55, 1516 (1989).
25. Beadle, W. E., Tsai, J.C.C. and Plummer, R.D., eds., Quick Reference Manual for Silicon Integrated Circuit Technology, (Wiley, New York) 1985.
26. Fair, R.B., Impurity Doping, ed. Wang, F.F.Y. (North Holland, Amsterdam) Ch. 7 (1981).
27. Tsai, J.C.C., VLSI Technology, ed. Sze, S.M. (McGraw-Hill, New York) Ch. 1 (1981).
28. Chu, K.K., Lau, S.S., Mayer, J.W. and Muller, H., Thin Solid Films, 25, 393 (1975).
29. Tu, K.N., J. Appl. Phys. 48, 3379 (1977).
30. Olowolafe, J.O., Nicolet, M-A, Pal, C.S. and Mayer, J.W., Thin Solid Films, 38, 143 (1976).
31. Finstead, T.G., Mayer, J.W. and Nicolet, M-A., Thin Solid Films, 51, 391 (1978).
32. Scott, D.M. and Nicolet, M-A, Phys. Status. Solidi. A66, 773 (1981).
33. Tu, K.N., Alessandrini, E., Chu, W.K., Krautle, H. and Mayer, J.W., Jpn. J. Appl. Phys.13, suppl. 2 part 1, 669 (1974).
34. d‘Heurle, F., Petersson, S., Stolt, L. and Strizker, B., J. Appl. Phys. 53, 5678 (1982).
35. Lien, C.-D., Nicolet, M-A and Lau, S.S., Phys. Status. Solidi. A81, 123 (1984).
36. d'Heurle, F.M. and Gas, P., J. Mater Res. 1, 205 (1986).
37. Pollock, D.D., Physics of Engineering Materials, (Prentice Hall, Englewood Cliffs, New Jersey), 102 (1990).

Kinetic Studies of Nanoscale Crystallization in Electronic Materials

  • C. Hayzelden (a1) (a2) and J. L. Batstone (a3)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed