Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-19T20:50:43.364Z Has data issue: false hasContentIssue false

Isocyanate-Derived Organic Aerogels: Polyureas, Polyimides, Polyamides

Published online by Cambridge University Press:  28 January 2011

Nicholas Leventis
Affiliation:
Department of Chemistry, Missouri University of Science and Technology, Rolla, MO 65409, U.S.A. (leventis@mst.edu)
Chariklia Sotiriou-Leventis
Affiliation:
Department of Chemistry, Missouri University of Science and Technology, Rolla, MO 65409, U.S.A. (leventis@mst.edu)
Naveen Chandrasekaran
Affiliation:
Department of Chemistry, Missouri University of Science and Technology, Rolla, MO 65409, U.S.A. (leventis@mst.edu)
Sudhir Mulik
Affiliation:
Department of Chemistry, Missouri University of Science and Technology, Rolla, MO 65409, U.S.A. (leventis@mst.edu)
Chakkaravarthy Chidambareswarapattar
Affiliation:
Department of Chemistry, Missouri University of Science and Technology, Rolla, MO 65409, U.S.A. (leventis@mst.edu)
Anand Sadekar
Affiliation:
Department of Chemistry, Missouri University of Science and Technology, Rolla, MO 65409, U.S.A. (leventis@mst.edu)
Dhairyashil Mohite
Affiliation:
Department of Chemistry, Missouri University of Science and Technology, Rolla, MO 65409, U.S.A. (leventis@mst.edu)
Shruti S. Mahadik
Affiliation:
Department of Chemistry, Missouri University of Science and Technology, Rolla, MO 65409, U.S.A. (leventis@mst.edu)
Zachary J. Larimore
Affiliation:
Department of Chemistry, Missouri University of Science and Technology, Rolla, MO 65409, U.S.A. (leventis@mst.edu)
Hongbing Lu
Affiliation:
Department of Mechanical Engineering, University of Texas at Dallas, Richardson, TX 75080, U.S.A.
Gitogo Churu
Affiliation:
Department of Mechanical Engineering, University of Texas at Dallas, Richardson, TX 75080, U.S.A.
Joseph T. Mang
Affiliation:
Los Alamos National Laboratory, Los Alamos, NM 87545, U.S.A.
Get access

Abstract

We describe organic aerogels derived from multifunctional isocyanates through reaction with water (polyureas), acid andydrides (polyimides) and carboxylic acids (polyamides). All processes are invariably single-step, one-pot and take place at room or slightly elevated temperatures. The resulting materials are robust, their density may vary over a very wide range and their nanomorphology can be either particulate or fibrous, but in all cases they all consist of similarly sized primary particles.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kistler, S. S., J. Phys. Chem. 36, 5263 (1932).10.1021/j150331a003Google Scholar
2. Pekala, R., J. Mater. Sci. 24, 32213227 (1989).10.1007/BF01139044Google Scholar
3. Lu, X., Arduini-Schuster, M. C., Kuhn, J., Nilsson, O., Fricke, J. and Pekala, R. W., Science 255, 971972 (1992).10.1126/science.255.5047.971Google Scholar
4. Tran, T. D., Feikert, J., Pekala, R. W., Miller, J. and Dunn, B., Materials Research Society Symposium Proceedings 393, 327332 (1995).10.1557/PROC-393-327Google Scholar
5. Alviso, C. and Pekala, R., R. Polym. Preprints 32, 242243 (1991).Google Scholar
6. De Vos, R. and Biesmans, G. L. J. G. “Organic Aerogels,” US patent No. 5,484,818 (1996).Google Scholar
7. Malik, S., Roizard, D. and Guenet, J.-M., Macromolecules 39, 59575959 (2006).10.1021/ma060770gGoogle Scholar
8. Rhine, W., Wang, J. and Begag, R., “Polyimide Aerogels, Carbon Aerogels, and Metal Carbide Aerogels and Methods of Making Same,” US Pat No: 7,074,880 (2006).Google Scholar
9. Lorjai, P., Chaisuwan, T. and Wongkasemjit, S., J. Sol-Gel Sci. Technol. 52, 5664 (2009).10.1007/s10971-009-1992-4Google Scholar
10. Lee, J. K. and Gould, G. L., J. Sol-gel Sci. Tech. 44, 2940 (2007).10.1007/s10971-007-1598-7Google Scholar
11. Lee, J. K., Gould, G. L. and Wendell, R., J. Sol-gel Sci. Tech. 49, 209220 (2009).10.1007/s10971-008-1861-6Google Scholar
12. Leventis, N., Acc. Chem. Res. 40, 874884 (2007).10.1021/ar600033sGoogle Scholar
13. Leventis, N., Vassilaras, P., Fabrizio, E. F. and Dass, A., J. Mater. Chem. 17, 15021508 (2007).10.1039/B612625AGoogle Scholar
14. Leventis, N., Chandrasekaran, N., Sadekar, A. G., Mulik, S. and Sotiriou-Leventis, C., J. Mat. Chem. 20, 74567471 (2010).10.1039/c0jm00856gGoogle Scholar
15. Chandrasekaran, N., Mulik, S., Larimore, Z., Churu, G., Lu, H., Sotiriou-Leventis, C. and Leventis, N., Polymer Preprints 51, 334335 (2010).Google Scholar
16. Leventis, N., Sotiriou-Leventis, C., Chandrasekaran, N., Larimore, Z. J., Lu, H., Mang, J. T., Mulik, S. and Churu, G., Chem. Mater. 23(2011) (in press).10.1021/cm200323eGoogle Scholar
17. Sroog, C. E., Prog. Polym. Sci. 16, 561694 (1991).10.1016/0079-6700(91)90010-IGoogle Scholar
18. Chidambareswarapattar, C., Larimore, Z. J., Sotiriou-Leventis, C., Mang, J. T. and Leventis, N., J. Mater. Chem. 20, 96669678 (2010).10.1039/c0jm01844aGoogle Scholar
19. Blagbrough, I. S., Mackenzie, N. E., Ortiz, C. and Scott, A. I., Tetrahedron Lett. 27, 12511254 (1986).10.1016/S0040-4039(00)84230-6Google Scholar
20. Odian, G., Principles of Polymerization, Fourth Edition, (Wiley-Interscience, 2004) pp. 130132.10.1002/047147875XGoogle Scholar
21. American Society for Metals, ASM Engineering Materials Handbook, Composites, Volume 1: ASM International: Materials Park, OH, p. 178, Table 2, 1998.Google Scholar
22. Jones, S. M., J. Sol-Gel Sci. Technol. 44, 255258 (2007).10.1007/s10971-007-1618-7Google Scholar
23. Odian, G., Principles of Polymerization, Third Edition, (Wiley, 1991) Chapter 2.Google Scholar