Hostname: page-component-848d4c4894-8kt4b Total loading time: 0 Render date: 2024-06-24T02:04:40.879Z Has data issue: false hasContentIssue false

IR-VUV Dielectric Function of Al1−xInxN determined by Spectroscopic Ellipsometry

Published online by Cambridge University Press:  17 March 2011

A. Kasic
Affiliation:
University of Leipzig, Dept. of Semiconductor Physics, 04103 Leipzig, Germany Center for Microelectronic and Optical Materials Research, University of Nebraska, Lincoln 68588, U.S.A.
M. Schubert
Affiliation:
University of Leipzig, Dept. of Semiconductor Physics, 04103 Leipzig, Germany Center for Microelectronic and Optical Materials Research, University of Nebraska, Lincoln 68588, U.S.A.
B. Rheinländer
Affiliation:
University of Leipzig, Dept. of Semiconductor Physics, 04103 Leipzig, Germany
J. Off
Affiliation:
University of Stuttgart, 4th Physics Institute, 70569 Stuttgart, Germany
F. Scholz
Affiliation:
University of Stuttgart, 4th Physics Institute, 70569 Stuttgart, Germany
C. M. Herzinger
Affiliation:
J. A. Woollam Co., Inc., Lincoln 68508, U.S.A
Get access

Abstract

Spectroscopic Ellipsometry from the mid-infrared (mid-ir) to the vacuum-ultraviolet (vuv) spectral range (350 cm−1 … 8.8 eV) is used to study the optical properties of hexagonal MOVPE-grown Al1−xInxN films for 0.11 ≤ × ≤ 0.21. The AlInN E1(TO) phonon shows a onemode behavior in contrast to recent theoretical predictions [H. Grille, Ch. Schnittler, and F. Bechstedt, Phys. Rev. B 61, 6091 (2000)]. Approximately 120 nm thick Al1−xInxN films grown on slightly compressively strained hexagonal GaN buffer layers reveal the influence of in-plane strain on the E1(TO) phonon mode frequencies. Al1−xInxN deposited directly on [0001] sapphire substrate possesses E1(TO) mode frequency which indicate fully relaxed film growth. For highquality Al0.890In0.110N one A1(LO) phonon mode was observed. Furthermore, we present the complex dielectric function of hexagonal Al0.872In0.128N from the mid-ir to vuv spectral range.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kariya, M., Nitta, S., Yamaguchi, S., Kato, H., Takeuchi, T., Wetzel, C., Amano, H., and Akasaki, I., Jpn. J. Appl. Phys. 37, L697 (1998)Google Scholar
2. Yamaguchi, S., Kariya, M., Nitta, S., Takeuchi, T., Wetzel, C., Amano, H., and Akasaki, I., Appl. Phys. Lett. 76, 876 (2000)Google Scholar
3. Peng, T., Piprek, J., Qiu, G., Olowolafe, J.O., Unruh, K.M., Swann, C.P., and Schubert, E.F., Appl. Phys. Lett. 71, 2439 (1997)Google Scholar
4. Kim, K.S., Saxler, A., Kung, P., Razeghi, M., and Lim, K.Y., Appl. Phys. Lett. 71, 800 (1997)Google Scholar
5. Grille, H., Schnittler, Ch., and Bechstedt, F., Phys. Rev. B 61, 6091 (2000)Google Scholar
6. Kasic, A., Schubert, M., Einfeldt, S., Hommel, D., and Tiwald, T.E., Phys. Rev. B 62, 7365 (2000)Google Scholar
7. Schubert, M., Kasic, A., Tiwald, T.E., Off, J., Kuhn, B., and Scholz, F., MRS Internet J. Nitride Semicond. Res. 4, 11 (1999)Google Scholar
8. Schubert, M., Kasic, A., Tiwald, T.E., Woollam, J.A., Härle, V., Scholz, F., MRS Internet J. Nitride Semicond. Res. 5S1, W11.39 (2000)Google Scholar
9.The In contents may be regarded as mean values since we cannot rule out microscopic phase separation and fluctuations within the films from the IRSE and XRD studies.Google Scholar
10. Schubert, M., Tiwald, T.E., and Herzinger, C.M., Phys. Rev. B 61, 8187 (2000)Google Scholar
11. Tiwald, T.E., Thompson, D.W., and Woollam, J.A., J. Vac. Sci. Technol. B 16, 312 (1998)Google Scholar
12. Davydov, V.Yu., Emtsev, V.V., Goncharuk, I.N., Smirnov, A.N., Petrikov, V.D., Mamutin, V.V., Vekshin, V.A., Ivanov, S.V., Smirnov, M.B., and Inushima, T., Appl. Phys. Lett. 75, 3297 (1999)Google Scholar