Hostname: page-component-848d4c4894-tn8tq Total loading time: 0 Render date: 2024-06-24T10:13:41.086Z Has data issue: false hasContentIssue false

IR-Visible Photoluminescence Study of Nanometer-Size Amorphous Silicon Powder Produced by Square-Wave-Modulated RF Glow Discharge

Published online by Cambridge University Press:  15 February 2011

J. Costa
Affiliation:
Departament de Física Aplicada i Electrònica. Universitat de Barcelona.Av.Diagonal 647, E08028 Barcelona. Catalonia (Spain)
P. Roura
Affiliation:
Departament de Física Aplicada i Electrònica. Universitat de Barcelona.Av.Diagonal 647, E08028 Barcelona. Catalonia (Spain)
G. Sardin
Affiliation:
Departament de Física Aplicada i Electrònica. Universitat de Barcelona.Av.Diagonal 647, E08028 Barcelona. Catalonia (Spain)
J.R. Morante
Affiliation:
Departament de Física Aplicada i Electrònica. Universitat de Barcelona.Av.Diagonal 647, E08028 Barcelona. Catalonia (Spain)
E. Bertran
Affiliation:
Departament de Física Aplicada i Electrònica. Universitat de Barcelona.Av.Diagonal 647, E08028 Barcelona. Catalonia (Spain)
Get access

Abstract

Amorphous silicon powder exhibiting microstructural properties such as nanometer-size, large presence of silicon-hydride groups and high surface/volume ratio has been produced in a plasma enhanced chemical vapor deposition (PECVD) reactor using pure silane gas and low frequency square-wave-modulated (SQWM) rf power (13.56 MHz). The possible crystallinity of nanometer-size domains embedded in the amorphous network was studied with Raman spectroscopy and electron diffraction analysis.

Photoluminescence (PL) in the near IR-VIS region was excited by an Ar laser. The PL intensity exhibits very unusual properties: a supralinear dependence on excitation power and an exponential decrease with pressure (below 50 Pa). The analysis of PL dynamics led us to propose a mathematical model of excitation of the PL. This model involves the existence of an intermediate step, with an extremely long lifetime, that controls the PL dynamics.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Proceedings of the 39th National Symposium of the American Vacuum Society, Part II, J. Vac. Sci. Technol. A, 11 1191141 (1994).Google Scholar
[2] Proceedings of the NATO advanced research workshop: “Formation, Transport and Consequences of Particles in Plasmas”, Plasma Sources Sci. Technol., (in press).Google Scholar
[3] Costa, J., Sardin, G., Campmany, J., Andújar, J. L., Canillas, A., Bertran, E., Mater. Res. Soc. Symp. Proc., 286 155 (1993).Google Scholar
[4] Bertran, E., Costa, J., Sardin, G., Campmany, J., Andújar, J. L., Plasma Source Sci. Technol. (in press)Google Scholar
[5] Boufendi, L., Plain, A., Blondeau, J. Ph., Bouchule, A., Laure, C., Toogood, M., Appl. Phys. Lett., 60 169 (1992).Google Scholar
[6] Costa, J., Sardin, G., Campmany, J., Bertran, E., Vacuum (in press).Google Scholar
[7] Canham, L. T., Appl. Phys. Lett, 57 1046 (1990).Google Scholar
[8] Tsai, C., Li, K. H., Kinosky, D. S., Qian, R. Z., Hsu, T. C., Irby, J. T., Banerjee, S. K., Tasch, A. F., Campbell, J. C., Hance, B. K., White, J. M., Appl. Phys. Lett., 60 1700 (1992).Google Scholar
[9] Furukawa, S., Miyasato, T., Phys. Rev. B, 36 5726 (1988); Jpn. J. Appl. Phys., 27 L2207 (1988).Google Scholar
[10] Kanemitsu, Y., Suzuki, K., Uto, H., Masumoto, Y., Matsumoto, T., Kyushin, S., Higuchi, K., Matsumoto, H., Appl. Phys. Lett., 61 2446 (1992).Google Scholar
[11] Morisaki, H., Ping, F.W., Ono, H., Yazawa, K., J. Appl. Phys., 70 1869 (1991).Google Scholar
[12] Brandt, M. S., Fuchs, H. D., Stutzman, M., Weber, J., Cardona, M., Solid State Commun., 81 307 (1992).Google Scholar
[13] Costa, J., Roura, P., Sardin, G., Morante, J. R., Bertran, E., Appl. Phys. Lett., 64 463 (1994).Google Scholar
[14] Andújar, J. L., Bertran, E., Canillas, A., Esteve, J., Andreu, J., Morenza, J. L., Vacuum, 39 795 (1989).Google Scholar
[15] Costa, J., Sardin, G., Campmany, J., Anújar, J. L., Canillas, A., Bertran, E., Mat. Res. Symp. Proc., 297 1031 (1993).Google Scholar
[16] Pearsall, T. P., Adams, J. C., Wu, J. E., Nosho, B. Z., Aw, Ch., Patton, J. C., J. Appl. Phys., 71 4470 (1992).Google Scholar
[17] Tessler, L. R., Alvarez, F., Teschke, O., Appl. Phys. Lett., 62 2381 (1993).Google Scholar
[18] Wang, K., Han, D., Kemp, M., Silver, M., Appl. Phys. Lett., 62 157 (1992).Google Scholar
[19] Hollenstein, Ch. et al. , Plasma Sources Sci. Technol., (in press).Google Scholar