Hostname: page-component-7479d7b7d-q6k6v Total loading time: 0 Render date: 2024-07-12T00:30:22.225Z Has data issue: false hasContentIssue false

Ion-Implanted Amorphous Silicon Studied by Variable Coherence TEM

Published online by Cambridge University Press:  10 February 2011

J-Y. Cheng
Affiliation:
University of Illinois, Department of Materials Science and Engineering, Urbana, IL 61801, jcheng1@uiuc.edu
J. M. Gibson
Affiliation:
Argone National Laboratories, Materials Science Division, 9700 S. Cass Ave, Argone, IL 60439
P. M. Voyles
Affiliation:
University of Illinois, Department of Physics, Urbana, IL 61801 4NEC Research Institute
M. M. J. Treacy
Affiliation:
Independence Way, Princeton, NJ 08540
D. C. Jacobson
Affiliation:
Lucent Bell Laboratories, 600 Mountain Ave, Murray Hill, NJ 07974
Get access

Abstract

Amorphous silicon formed by ion-implantation of crystalline silicon is investigated with the use of VC-TEM (variable-coherence transmission electron microscopy). This technique is sensitive to medium-range-order structures. The results from high-energy Si implanted samples showed a striking similarity to sputtered amorphous silicon. We found that both ion-implanted and sputtered samples have paracrystalline structures, rather than the expected continuous random network (CRN). We also observed the structural relaxation of the ion-implanted amorphous silicon after ex-situ thermal annealing towards the random network. The more disordered structures are favored and a large heat of relaxation is released as the temperature increases. Finally, we show some preliminary results on the structural variation with the sample depth.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Olson, G. L. and Roth, J. A., Mat. Sci. Rep. 3, 1 (1988).Google Scholar
2.Kennedy, E. F., Csepregi, L., Mayer, J. W. and Sigmon, T. W., J. Appl. Phys. 48 (10), 4241 (1977).Google Scholar
3.Roorda, S., Sinke, W.C., Poate, J. M., Jacobson, D. C., Dierker, S., Dennis, B. S., Eaglesham, D. J., Spaepen, F. and Fuoss, P., Phys. Rev. B 44 (8), 3702 (1991).Google Scholar
4.Treacy, M. M. J. and Gibson, J. M., Acta Crystallogr. A52 (2), 212 (1996).Google Scholar
5.Gibson, J. M. and Treacy, M. M. J., Phys. Rev. Lett. 78 (6), 1074 (1997)Google Scholar
6.Gibson, J. M., Treacy, M. M. J., Voyles, P. M., Jin, H-C. and Abelson, J. R., Appl. Phys. Lett. 73 (21), 3093 (1998)Google Scholar
7.Gibson, J. M., Cheng, J-Y, Voyles, P., Treacy, M. M. J. and Jacobson, D. C., Mat. Res. Soc. Symp. Proc. 504 (1999)Google Scholar
8.Zuo, J. M., Ultramicroscopy 66, 21 (1996).Google Scholar
9.Treacy, M. M. J. and Gibson, J. M., J. Non-Cryst. Solids 231, 99 (1998).Google Scholar
10.Drosd, R. and Washburn, J., J. Appl. Phys. 53 (1), 397 (1982)Google Scholar
11.Gibson, J. M. and Treacy, M. M. J., Ultramicroscopy to be published.Google Scholar
12.Donovan, E. P., Spaepen, F., Poate, J. M. and Jacobson, D. C., Appl. Phys. Lett. 55, 1516 (1989).Google Scholar
13.Roorda, S., Doom, S., Sinke, W.C., Scholte, P.M. L. O. and Loenen, E. van, Phys. Rev. Lett. 62 (16), 1880 (1989)Google Scholar
14.Roorda, S. and Sinke, W.C., Mat. Res. Soc. Symp. Proc. 205, 9 (1992).Google Scholar
15.Williams, J. S. and Poate, J. M., Ion Implantation and Beam Processing, Academic Press, New York, 1984, p. 8197.Google Scholar
16.Winterbon, K. B., Sigmund, P. and Sanders, J. B., Kgl. Danske Vid. Selsk. Mat. Fys. Medd. 37 (14) (1970)Google Scholar