Skip to main content Accessibility help
×
Home

Ionic Transport in Silicate Glasses Modelled from the Local Structure

  • G. Neville Greaves (a1), G. J. Baker (a1), A. J. Dent (a1), M. Oversluizen (a1) and K. L. Ngai (a2)...

Abstract

Comprehensive studies using X-ray Absorption Fine Structure (XAFS) spectroscopy of the local environments in oxide glasses of alkalis like Na point to the existence of channels of modifying oxide within the glass forming network - a Modified Random Network or MRN. It has been proposed that these are the primary pathways for ionic conduction. Such microsegregation demands a high alkali coordination for non-bridging oxygens. This has now been confirmed from analysis of the O near edge XAFS of silica and sodium disilicate glass. Dielectric relaxation in oxide glasses provides considerable evidence for the cooperative action of alkali ions. The MRN has been used to develop specific microscopic models for ionic transport based on XAFS and incorporating correlated ionic movement. These quantitatively predict the ionic conductivity of silicate and aluminosilicate glasses and the compositional dependence of the activation energy with alkali concentration.

Copyright

References

Hide All
[1] Greaves, G.N., Glass Science and Technology 4A edited by Uhlmann, D.R. and Kreidl, N.J., (Academic Press, London 1990), p.1.
[2] Greaves, G.N., Fontaine, A., Lagarde, P., Raoux, D., Gurman, S. J., Nature (London), 293, 611 (1981).
[3] Greaves, G.N., J. Non-Cryst. Solids, 71, 203 (1985).
[4] Huang, C., Cormack, A.N., J. Chem. Phys., 93, 8180 (1990); 95, 3634 (1991); C. Huang, A. N. Cormack, J. Mater. Chem. 2, 281 (1992)..
[5] Vessal, B., Greaves, G.N., Martin, P.T., Chadwick, A.V., Mole, R., Houde-Walter, S., Nature (London) 356, 504 (1992).
[6] Greaves, G.N., Gurman, S.J., Catlow, C.R.A., Chadwick, A. V., Houde-Walter, S., Henderson, C.M.B., Dobson, B.R., Phil. Mag. A 64, 1059 (1991).
[7] Greaves, G.N. and Ngai, N.L. Proc. Int. Conf. Defects in Insulating Materials, Nordkirchen 1992 (in press, 1993).
[8] Maekawa, H., Maekawa, T., Kawamura, K., Yokakawa, T., J. Non-Cryst. Solids, 127, 53 (1991).
[9] Gurman, S.J., J. Non-Cryst. Solids, 125, 151 (1990).
[10] Cao, Y., Cormack, A.N., unpublished results.
[11] Houde-Walter, S.N., Inman, J.M., Dent, A.J., Greaves, G.N., unpublished results.
[12] Cormack, A.N. (private communication).
[13] Pant, A.K., Cruikshank, D.W., Acta. Crystallogr. B24, 13 (1968).
[14] Elliott, S.R., Nature (London) 357, 650 (1992).
[15] Sprenger, D., Bach, H., Meisel, W., Güitlich, P..The Physics of Non-Crystalline Solids edited by Pye, L.D., LaCourse, W.C., Stevens, H.J. (Taylor & Francis, London 1992), p.42.
[16] Surman, M., Cragg-Hine, I., Singh, J., Bowler, B.J., Padmore, H.A., Norman, D., Johnson, A.L., Walter, W.K., King, D.A., Davis, R., Purcell, K.G., Thornton, G., Rev. Sci. Instrum, 63, 4349 (1992).
[17] Greaves, G.N., Baker, G., Surman, M., Oversluizen, M., unpublished results.
[18] Ngai, K.L., Rendell, R.W., Jain, H., Phys. Rev., B30, 2133 (1984).
[19] Balzer-Jollenbeck, G., Kanert, O., Jain, H., Ngai, K.L., Phys. Rev., B39, 6071 (1989).
[20] Ngai, K.L., Martin, S.W., Phys. Rev. B 40, 10550 (1989).
[21] Isard, J.O., J Soc. Glass Technol., 43, 113 (1959); H. Wakabayashi, Phys. Chem. Glasses, 30, 52 (1989).
[22] Frischat, G.H., Ionic Diffusion in Oxide Glasses (Trans. Tech., Aedermannsdorf 1975).

Ionic Transport in Silicate Glasses Modelled from the Local Structure

  • G. Neville Greaves (a1), G. J. Baker (a1), A. J. Dent (a1), M. Oversluizen (a1) and K. L. Ngai (a2)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed