Hostname: page-component-848d4c4894-4hhp2 Total loading time: 0 Render date: 2024-05-12T19:14:08.344Z Has data issue: false hasContentIssue false

Ionic Properties of Hydrous Oxide Gels

Published online by Cambridge University Press:  25 February 2011

J. Livage*
Affiliation:
Chimie de la Matière Condensée, Université Paris VI, 4 place Jussieu, 75252 Paris -, France.
Get access

Abstract

The sol-gel process offers new opportunities for the synthesis of ionic materials, specially in the shape of thin films. Hydrous oxides are obtained which exhibit specific properties arising from strong interactions betwwen adsorbed water molecules and the oxide network. Sol-gel derived coatings are good candidates as electrode materials for lithium batteries or electrochromic devices. Their open structure allows easier diffusion of Li+ ions in the liquid phase while electrons are delocalized through the oxide network. Moreover, water molecules favor the formation of ordered phases leading to the deposition of layers with preferred orientation. Electrochemical insertion can then be described as an intercalation process between solid particles.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Boilot, J.P., Colomban, P., Sol-Gel technology, ed. Klein, L.C. (Noyes, Park Ridge, NJ, 1988) p. 303.Google Scholar
2. Livage, J., Solid State Ionics, 50, 307 (1992).Google Scholar
3. Livage, J., Barboux, P., Nabavi, M., Jueinstein, P., Solid State Ionics, Mat. Res. Soc. Symp. Proc., 135, 131 (1989).Google Scholar
4. Livage, J., Chem. Mater., 3, 578 (1991).Google Scholar
5. Inubushi, A., Masuda, S., Okubo, M., Matsumoto, A., Sadamura, H., Suzuki, K., High Tech Ceramics, ed. Vincenzini, P. (Elsevier, Amsterdam, 1987) p. 2165.Google Scholar
6. Watson, J.H., Heller, W., Wojtowicz, W., Science, 109, 274 (1949).Google Scholar
7. Aldebert, P., Baffier, N., Gharbi, N., Livage, J., Mater. Res. Bull., 16, 669 (1981).Google Scholar
8. Wittingham, M.S., J. Electrochem. Soc., 122, 713 (1975).Google Scholar
9. Murphy, D.W., Christian, P.A., DiSalvo, F.J., Carides, J.N., J. Electrochem. Soc., 126, 497 (1979).Google Scholar
10. Baddour, R., Pereira-Ramos, J.P., Messina, R., Perichon, J., J. Electroanal. Chem., 277, 359 (1990).Google Scholar
11. Baddour, R., Pereira-Ramos, J.P., Messina, R., Perichon, J., J. Electroanal. Chem., 314, 81 (1991).Google Scholar
12. Araki, B., Mailhd, C., Baffler, N., Livage, J., Vedel, J., Solid State lonics, 9–10, 439 (1983).Google Scholar
13. Nabavi, M., Sanchez, C., Taulelle, F., Livage, J., Guibert, A. de, Solid State Ionics, 28–30, 1183 (1988).Google Scholar
14. Miura, T., Sugiura, E., Kishi, T., Nagai, T., Denki Kagaku, 56, 413 (1988).Google Scholar
15. Pereira-Ramos, J.P., Messina, R., Bach, S., Baffier, N., Solid State Ionics, 40–41, 970 (1990).Google Scholar
16. Judeinstein, P., Livage, J., J. Mater. Chem., 1, 621 (1991).Google Scholar
17. Judeinstein, P., Livage, J., Zarudiansky, A., Rose, R., Solid State Ionics, 28–30, 1722 (1988).Google Scholar
18. Zocher, H., Heller, W., Z. Anorg. Chem., 186, 75 (1930).Google Scholar
19. Judeinstein, P., Morineau, R., Livage, J., Solid State Ionics, 51, 239 (1992).Google Scholar
20. Chemseddine, A., Babonneau, F., Livage, J., J. Non-Cryst. Solids, 91, 271 (1987).Google Scholar