Hostname: page-component-848d4c4894-jbqgn Total loading time: 0 Render date: 2024-06-19T23:27:54.901Z Has data issue: false hasContentIssue false

Ionic Overlayers on Corrugated Surfaces II: Melting

Published online by Cambridge University Press:  01 January 1992

Hyangsuk Seong
Affiliation:
Department of Physics and Astronomy and the Center for Fundamental Materials Research, Michigan State University, East Lansing, MI 48824
S.D. Mahanti
Affiliation:
Department of Physics and Astronomy and the Center for Fundamental Materials Research, Michigan State University, East Lansing, MI 48824
Surajit Sen
Affiliation:
Department of Physics and Astronomy and the Center for Fundamental Materials Research, Michigan State University, East Lansing, MI 48824
Tahir Çağin
Affiliation:
Molecular Simulations Inc.,Suite 540, 199 S. Robles Avenue, Pasadena, CA 91101
Get access

Abstract

Using molecular dynamics simulation we have investigated the melting properties of a 2-dimensional system of ions interacting through a screened Coulomb potential in the presence of a substrate. We focus on the role of the substrate potential in the melting transition. The physical system we study is the stage-2 graphite intercalation compound RbC24 and a related system RbC24,57 whose intercalant density differs from the former by a small amount. Our results reveal the nature of melting processes characteristic of periodic domain wall solids.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kosterlitz, J. M. and Thouless, D. J., Progress in Low Temperature Physics, ed. by Brewer, D. F. (North-Holland, Amsterdam), Vol. VII–B, p.373.Google Scholar
2. Nelson, D. R. and Halperin, B. I., Phys. Rev. B 19, 2457 (1979).Google Scholar
3. Young, A. P., Phys. Rev. B 19, 1855 (1979).Google Scholar
4. Cui, J. and Fain, S. C. Jr., Phys. Rev. B 39, 8628 (1989), see other references in this paper.Google Scholar
5. Clarke, R., Gray, J. N., Homma, H., and Winokur, M. J., Phys. Rev. Lett. 47, 1407 (1981); Winokur, M. J. and , R. Clarke, Phys. Rev. Lett. 54, 811 (1985); Winokur, M. J. and Clarke, R., Phys. Rev. 34, 4948 (1986); See also M. J. Winokur, Ph. D. thesis, University of Michigan (1986)Google Scholar
6. Zabel, H., Magerl, A., Rush, J. J., and Misenheimer, M. E., Phys. Rev. B 40, 7616 (1989).Google Scholar
7. Moss, S. C. and Moret, R., Graphite Intercalation Compounds, Vol 1, Structure and Dynamics, ed. by Zabel, H. and Solin, S. A., Springer Series on Topics in Current Physics, Springer (1990).Google Scholar
8. Moss, S. C., Reiter, G., Robertson, J. L., Thompson, C., Fan, J.D., and Oshima, K., Phys. Rev. Lett. 57, 3191 (1986); the two-particle potential used in the present work is from the work of Zhuo-Min Chen, Karim, Omar A., and Montgomery Pettitt, B., J. Chem. Phys. 89 (2), 1042 (1988) and differs slightly from that used in Moss et alwork.Google Scholar
9. Seong, Hyangsuk, Sen, Surajit, Çağin, Tahir, and Mahanti, S. D., Phys. Rev. B 45, 8841 (1992).Google Scholar
10. Seong, Hyangsuk, Mahanti, S. D., Sen, Surajit, and Çağin, Tahir, Phys. Rev. B 46, 8748 (1992).Google Scholar
11. Abraham, F. F., Adv. Phys. 35, 1 (1986); Abraham, F. F., Phys. Rev. B 28, 7338 (1983); ibid B 29, 2824 (1984).Google Scholar
12. Udink, C and van der Elsken, J., Phys. Rev. B 35, 279 (1987).Google Scholar
13. Vashishta, P. and Kalia, R. K., Melting, Localization, and Chaos, ed. by. Kalia, R. K. and Vashishta, P., North Holland (New York) 1982, p.43.Google Scholar
14. Chen, H., Dutta, P., Ellis, D. E., and Kalia, R., Jour. Chem. Phys. 85(4), 2232 (1986).Google Scholar
15. Glasser, M., Ph. D thesis, University of Colorado (1991).Google Scholar
16. Strandburg, K. J., Zollweg, J. A.. and Chester, G. V., Phys. Rev. B 30, 2755 (1984).Google Scholar