Skip to main content Accessibility help
×
Home

Ionic Motion and Structure of Ion Conductive Glasses

  • T. Akai (a1), M. Yamashita (a1), H. Yamanaka (a1) and H. Wakabayashi (a1)

Abstract

The dynamic structure of xLi2S-Ga2S3-6GeS2 (x=4 and 6) glasses has been investigated by 7Li nuclear magnetic resonance. In two samples similar values of spin-lattice relaxation time (T1) were obtained. The relaxation mechanism at 20MHz and 78MHz is therefore attributed to the local motion of lithium ions. In the glass corresponding to x=6, which shows higher conductivity, the slow motion of ions showing an activation energy of 24.3kJ/Mol has been detected by the spin-lattice relaxation time in the rotating frame (T1p). This value is comparable to the activation energy determined by the conductivity. The existence of this mode is supported by the motional narrowing of the line width which is sensitive to the motion less than 10kHz.

Copyright

References

Hide All
[1] Julien, C., NATO ASI Ser. B, 199, 335 (1989).
[2] Ribes, M., Ravaine, D., Souquet, J. L. and Maurin, M., Revue de Chimie Minerale, 16, 339 (1979).
[3] Kennedy, J. H. and Yang, Y., J. Electrochem. Soc, 133, 2437 (1986).
[4] Levasseur, A., Olazcuaga, R., Kbala, M., Zahi, M. and Hagenmuller, P., C. R. Acad. Sci. Paris, C, 563 (1981).
[5] Mercier, R., Malugani, J. P., Fahys, B. and Robert, G., Solid State Ionics, 5, 663 (1981).
[6] Souquet, J. L., Robinel, E., Barrau, B. andm. Ribes, Solid State Ionics, 3/4 317 (1981).
[7] Senegas, J. and Olivier-Fouracade, J., J. Phys. Chem. Solids., 44, 1033 (1983).
[8] Visco, S., Spellane, P. and Kennedy, J. H., J. Electrochem. Soc, 132, 1766 (1985).
[9] Borsa, F., Torgeson, D. R., Martin, S. W. and Patel, H. K., Phys. Rev. B, 46, 795 (1992).
[10] Abragam, A., Principle of Nuclear Magnetism. (Oxford University Press, New York, 1961). p291.
[11] Martin, S. W., Mat. Chem. Phys., 23, 225 (1989).
[12] Davidson, D. W. and Cole, R. H., J. Chem. Phys., 19, 1484 (1951).
[13] Kohlraush, R., Ann. Phys. (Leipzig), 12, 393 (1847).
[14] Bjorkstam, J. L., Listerud, J. and Villa, M., Solid State Ionics., 18/19, 117 (1986).
[15] Bjorkstam, J. L., Listerud, J. and Villa, M., Phys. Rev. B, 22, 5025 (1980).
[16] Göbel, E., Müller-Warmuth, W. and Olyschläger, H., J. Magn. Reson., 36, 371 (1979).
[17] Reinecke, T. L. and Ngai, K. L., Phys. Rev. B, 12, 3476 (1975).
[18] Kuchler, R., Kanret, O. and Rückstein, S. and Jain, H., J. Non-Cryst. Solids, 128, 328 (1991).
[19] Look, D. C. and Lowe, I. J., J. Chem. Phys., 44, 2995 (1966).
[20] Bjorkstam, J. L., Listerud, J., Villa, M. and Massara, C. I., J. Magn. Reson., 65, 383 (1985).
[21] Hendrickson, J. R. and Bray, P. J., J. Magn. Reson., 9, 341 (1973).
[22] Hendrickson, J. R. and Bray, P. J., J. Chem. Phys., 61, 2754 (1974).
[23] Visco, S., Spellane, P. and Kennedy, J. H., J. Electrochem. Soc, 132, 1766 (1985).

Ionic Motion and Structure of Ion Conductive Glasses

  • T. Akai (a1), M. Yamashita (a1), H. Yamanaka (a1) and H. Wakabayashi (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed