Hostname: page-component-68945f75b7-qvshk Total loading time: 0 Render date: 2024-08-06T01:16:25.322Z Has data issue: false hasContentIssue false

Ion-Beam Enhanced Stress-Relaxation of SiGe on SiO2

Published online by Cambridge University Press:  26 February 2011

Masanori Tanaka
Affiliation:
m_tanaka@nano.ed.kyushu-u.ac.jp, Kyushu University, Department of Electronics, Japan
Taizoh Sadoh
Affiliation:
sadoh@ed.kyushu-u.ac.jp, Kyushu University, Department of Electronics, Japan
Masaharu Ninomiya
Affiliation:
mninomiy@sumcosi.com, SUMCO Corporation, Japan
Masahiko Nakamae
Affiliation:
mnakamae@sumcosi.com, SUMCO Corporation, Japan
Toyotsugu Enokida
Affiliation:
enokidat@mail.oka.melco.co.jp, Fukuryo Semicon Engineering Corporation, Japan
Masanobu Miyao
Affiliation:
miyao@ed.kyushu-u.ac.jp, Kyushu University, Department of Electronics, Japan
Get access

Abstract

The Ge condensation by oxidation of SiGe/Si-on-insulator (SOI) structures enabled highly stress relaxed SGOI. However, the relaxation rate obtained in the SiGe layers on insulator (SGOI) abruptly decreased with decreasing SiGe thickness below 50 nm. In order to enhance the relaxation rate in ultra-thin SGOI, the technique combined with H+ irradiation with medium dose (5×1015 cm-2) and post-annealing (1200°C) has been developed. It was demonstrated that highly relaxed (70 %) ultra-thin SGOI with low defect density (<106 cm-2) has been realized by this technique.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Sugiyama, N., Tezuka, T., Mizuno, T., Suzuki, M., Ishikawa, Y., Shibata, N., and Takagi, S., J. Appl. Phys. 95, 4007 (2004).Google Scholar
2 Sugii, N., Nakagawa, K., Yamaguchi, S., and Miyao, M., Appl. Phys. Lett. 75 (1999) 2948.Google Scholar
3 Mizuno, T., Takagi, S., Sugiyama, N., Satake, H., Kurobe, A., and Toriumi, A., IEEE Electron Device Lett. 21, 230 (2000).Google Scholar
4 Tezuka, T., Sugiyama, N., and Takagi, S., Appl. Phys. Lett. 79, 1798 (2001).Google Scholar
5 Bedell, S. W., Fogel, K., Sadana, D. K., and Chen, H., Appl. Phys. Lett. 85, 5869 (2004).Google Scholar
6 Sadoh, T., Matsuura, R., Ninomiya, M., Nakamae, M., Enokida, T., Hagino, H., and Miyao, M., Appl. Phys. Lett. 86, 211901 (2005).Google Scholar
7 LeGoues, F. K., Mater. Res. Bull. 21, 38 (1996)Google Scholar
8 Trinkaus, H., Holländer, B., Rongen, St., Mantl, S., Herzog, H.-J., Kuchenbecker, J., and Hackbarth, T., Appl. Phys. Lett. 76, 3552 (2000).Google Scholar
9 Buca, D., MörchbäTcher, M. J., Holländer, B., Luysberg, M., Loo, R., Caymax, M., and Mantl, S., Mat. Res. Soc. Symp. Proc. 809, B1.6.1 (2004).Google Scholar