Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-26T12:51:28.847Z Has data issue: false hasContentIssue false

Ion Irradiation Effects in Synthetic Garnets Incorporating Actinides

Published online by Cambridge University Press:  21 March 2011

Satoshi Utsunomiya
Affiliation:
Department of Nuclear Engineering and Radiological Sciences, 3Department of Geological Sciences, The University of Michigan, Ann Arbor, Michigan 48109-2104, U.S.A.
Lu-Min Wang
Affiliation:
Department of Nuclear Engineering and Radiological Sciences, 3Department of Geological Sciences, The University of Michigan, Ann Arbor, Michigan 48109-2104, U.S.A.
Sergey Yudintsev
Affiliation:
Institute of Geology of Ore Deposits, Russian Academy of Sciences, Staromonetny 35, 109017 Moscow, Russia
Rodney C. Ewing
Affiliation:
Department of Nuclear Engineering and Radiological Sciences, 3Department of Geological Sciences, The University of Michigan, Ann Arbor, Michigan 48109-2104, U.S.A.
Get access

Abstract

Radiation durability of garnet [A3B2(XO4)3; Ia3d; Z=8] has been examined by 1.0 MeV Kr2+ irradiation with in situ transmission electron microscopy over the temperature range of 50 to 1070 K. The targets were five synthetic garnets incorporating various contents of actinides and andradite, Ca3Fe2Si3O12. The synthetic garnets were silicates (N series) and ferrate-aluminate series (G series).

The critical amorphization temperatures (Tc), above which amorphization does not occur, were determined to be 1050 K for N77, 1130 K for N56, 1100 K for G3, 890 K for G4 and 1030 K for andradite. Tc of the synthetic garnets increased as the average atomic mass of the garnet increased. The maximum transferred energy by ballistic interaction was positively correlated to the atomic mass. The larger cascade size that formed due to the larger Emax might lead to the higher Tc.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ringwood, A. E., Kesson, S. E., Ware, N. G., Hibberson, W., Major, A., Nature 278, 219 (1979).Google Scholar
2. Ewing, R. C., Proc. Natl. Acad. Sci. USA 96, 3432 (1999).Google Scholar
3. Weber, W. J., Ewing, R. C., Wang, L. M., J. Mater. Res. 9, 688 (1994).Google Scholar
4. Ewing, R. C., Meldrum, A., Wang, L. M., Wang, S. X., Rev. in Miner. Gechem. 39, 319 (2000).Google Scholar
5. Weber, W. J., Ewing, R. C., C. Catlow, R. A., Rubia, T. Diaz de la, Hobbs, L. W., Kinoshita, C., Matzke, Hj., Motta, A. T., Nastasi, M., Salje, E. K. H., Vance, E. R., Zinkle, S. J., J. Mater. Res. 13, 1434 (1998).Google Scholar
6. Burakov, B. E., anderson, E. B., Knecht, D. A., Zamoryanskaya, M. A., Strykanova, E. E., Yagovkina, M. A., Mater. Res. Soc. Symp. Proc. 556, 55 (1999).Google Scholar
7. Burakov, B. E., anderson, E. B., Knecht, D. A., Zamoryanskaya, M. A., Petrova, M. A., Mater. Res. Soc. Symp. Proc. 608, 419 (2000).Google Scholar
8. Yudintsev, S. V., Lapina, M. I., Ptashkin, A. G., Ioudintseva, T. V., Utsunomiya, S., Wang, L. M., Ewing, R. C., Mater. Res. Soc. Symp. Proc. (2001) Submitted.Google Scholar
9. Wang, L. M., Eby, R. K., Janeczek, J., Ewing, R. C., Nucl. Instrum. and Meth. B 59/60, 395 (1991).Google Scholar
10. Eby, R. K., Ewing, R. C., Birtcher, R. C., J. Mater. Res. 7, 3080 (1992).Google Scholar
11. Wang, S. X., Wang, L. M., Ewing, R. C., Doremus, R. H., J. Non-Cryst. Solids 238, 198 (1998).Google Scholar
12. Kang, Y. C., Lenggoro, I. W., Park, S. B., Okuyama, K., Mater. Res. Bull. 35, 789 (2000).Google Scholar
13. Utsunomiya, S., Wang, L. M., Ewing, R. C., Nucl. Instrum. and Meth. B (Submitted)Google Scholar
14. Wang, S. X., Wang, L. M., Ewing, R. C., Phys. Rev. B 63, 024105–1 (2001).Google Scholar
15. , Meldrum, Zinkle, S. J., Boatner, L. A., Ewing, R. C., Phys. Rev. B 56, 13, 805 (1997).Google Scholar