Hostname: page-component-5c6d5d7d68-wp2c8 Total loading time: 0 Render date: 2024-08-19T02:52:13.195Z Has data issue: false hasContentIssue false

Ion Beam Modification of the Y-Ba-Cu-O System with the Mevva High Current Metal Ion Source

Published online by Cambridge University Press:  21 February 2011

I. G. Brown
Affiliation:
Lawrence Berkeley Laboratory, University of California, Berkeley, CA 94720
M. D. Rubin
Affiliation:
Lawrence Berkeley Laboratory, University of California, Berkeley, CA 94720
K. M. Yu
Affiliation:
Lawrence Berkeley Laboratory, University of California, Berkeley, CA 94720
R. Mutikainen
Affiliation:
Technical Research Center of Finland, Espoo, Finland
N. W. Cheung
Affiliation:
Electrical Engineering & Computer Sciences Department, University of California, Berkeley, CA 94720
Get access

Abstract

We have used high-dose metal ion implantation to ‘fine tune’ the composition of Y-Ba- Cu-O thin films. The films were prepared by either of two rf sputtering systems. One system uses three modified Varian S-guns capable of sputtering various metal powder targets; the other uses reactive rf magnetron sputtering from a single mixed-oxide stoichiometric solid target. Film thickness was typically in the range 2000–5000 A. Substrates of magnesium oxide, zirconia-buffered silicon, and strontium titanate have been used. Ion implantation was carried out using a metal vapor vacuum arc (MEVVA) high current metal ion source. Beam energy was 100–200 keV, average beam current about 1 mA, and dose up to about 1017 ions/cm2. Samples were annealed at 800 – 900°C in wet oxygen. Film composition was determined using Rutherford Backscattering Spectrometry (RBS), and the resistivity versus temperature curves were obtained using a four-point probe method. We find that the zero-resistance temperature can be greatly increased after implantation and reannealing, and that the ion beam modification technique described here provides a powerful means for optimizing the thin film superconducting properties.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Char, K., Kent, A. D., Kapitulnik, A., Beasley, M. R. and Geballe, T. H., Appl. Phys. Lett. 51, 1370 (1987).Google Scholar
2. Silver, R. M., Talvacchio, J. and de Lozanne, A. L., Appl. Phys. Lett. 51, 2149 (1987).Google Scholar
3. Gurvitch, M. and Fiory, A. T., Appl. Phys. Lett. 51, 1027 (1987).Google Scholar
4. Aida, T., Fukazawa, T., Takagi, K. and Miyauchi, K., Jpn. J. Appl. Phys. 26, L1489 (1987).Google Scholar
5. Lee, W. Y., Salem, J., Lee, V., Huang, T., Savoy, R., Deline, V. and Duran, J., Appl. Phys. Lett. 52. 2263 (1988).Google Scholar
6. Stamper, A., Greve, D. W., Wong, D. and Schlesinger, T. E., Appl. Phys. Lett. 52, 1746 (1988).Google Scholar
7. Terada, N., Ihara, H., Jo, M., Hirabayashi, M., Kimura, Y., Matsutani, K., Hirata, K., Ohno, E., Sugise, R. and Kawashima, F., Jpn. J. Appl. Phys. 22, L639 (1988).Google Scholar
8. Shah, S. I. and Carcia, P. F., Appl. Phys. Lett. 51, 2146 (1987).Google Scholar
9. Sandstrom, R. L., Gallagher, W. L., Dinger, T. R., Koch, R. H., Laibowitz, R. B., Kleinasser, A. W., Gambino, R. J.,. Bumble, B. and Chisolm, M. F., Appl. Phys. Lett. 52 444 (1988).Google Scholar
10. Lee, S. J., Rippert, E. D., Jin, B. Y., Song, S. N., Hwu, S. J., Poeppelmeier, J. and Ketterson, J. B., Appl. Phys. Lett. 51, 1194 (1987)Google Scholar
11. Wehner, G. K., Kim, Y. H., Kim, D. H. and Goldman, A. M., Appl. Phys. Lett. 52, 1187 (1988).Google Scholar
12. Selinder, T. I., Larsson, G., Helmersson, U., Olsson, P., Sundgren, J.-E. and Rudner, S., Appl. Phys. Lett. 52, 1907 (1988).Google Scholar
13. O. MichR-5%1Asano, H., Kato, Y., Kubo, S. and Tanabe, K., Jpn. J. Appl. Phys. 26, L1199 (1987).Google Scholar
14. Akune, T. and Sakamoto, N., Jpn. J. Appl. Phys. 27, L2078 (1988).Google Scholar
15. Miura, S., Yoshitake, Y., Matsubara, S., Miyasaka, Y., Shonata, N. and Satoh, T., Appl. Phys. Lett. 53, 1967 (1988).Google Scholar
16. Ohkuma, H., Mochiku, T., Kanke, Y., Wen, Z., Yokoyama, S., Asano, H., Iguchi, I. and Yamaka, E., Jpn, J. Appl. Phys. 26, L1484 (1987).Google Scholar
17. Asano, H., Tanabe, K., Katoh, Y., Kubo, S. and Michikami, O., Jpn. J. Appl. Phys. 26, L1221 (1987).Google Scholar
18. Liou, S. H., Hong, M., Kwo, J., Davidson, B. A., Chen, H. S., Nakahara, S., Boone, T. and Felder, R. J., Appl. Phys. Lett. 52, 1735 (1988).Google Scholar
19. Brown, I. G., Galvin, J. E. and MacGill, R. A., Appl. Phys. Lett. 42, 358 (1985).Google Scholar
20. Brown, I. G., Galvin, J. E., Gavin, B. F. and MacGill, R. A., Rev. Sci. Instrum. 57, 1069 (1986).Google Scholar
21. Brown, I. G., Galvin, J. E., MacGill, R. A. and Wright, R. T., 1987 Particle Accelerator Conference, Washington, D.C., March 1987.Google Scholar
22. Brown, I. G., Feinberg, B. and Galvin, J. E., J. Appl. Phys. 63, 4889 (1988).Google Scholar
23. Brown, I. G., Galvin, J. E. and MacGill, R. A., 1989 Particle Accelerator Conference, Chicago, IL, March 1989.Google Scholar