Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-26T13:44:29.130Z Has data issue: false hasContentIssue false

Ion Beam Mixing In Binary Amorphous Metallic Alloys*

Published online by Cambridge University Press:  26 February 2011

Horst Hahn
Affiliation:
Materials Science and Technology Division, Argonne National Laboratory, Argonne, IL 60439
R. S. Averback
Affiliation:
Materials Science and Technology Division, Argonne National Laboratory, Argonne, IL 60439
T. Diaz De La Rubia
Affiliation:
Dept. of Physics, SUNY at Albany, Albany, NY 12222
P. R. Okamoto
Affiliation:
Materials Science and Technology Division, Argonne National Laboratory, Argonne, IL 60439
Get access

Abstract

Ion beam mixing (IM) was measured in homogeneous amorphous metallic alloys of Cu-Er and Ni-Ti as a function of temperature using tracer impurities, i.e., the so called “marker geometry”. In Cu-Er, a strong temperature dependence in IM was observed between 80 K and 373 K, indicating that radiation-enhanced diffusion mechanisms are operative in this metallic glass. Phase separation of the Cu-Er alloy was also observed under irradiation as Er segregated to the vacuum and SiO2 interfaces of the specimen. At low-temperatures, the amount of mixing in amorphous Ni-Ti is similar to that in pure Ni or Ti, but it is much greater in Cu-Er than in either Cu or Er.

Type
Research Article
Copyright
Copyright © Materials Research Society 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Work supported by the U. S. Department of Energy, BES-Materials Sciences, under Contract W-31-109-Eng-38.

References

REFERENCES

1. Schwarz, R. B. and Johnson, W. L., Phys. Rev. Lett. 51, 415 (1983).CrossRefGoogle Scholar
2. Cheng, Y.-T., Johnson, W. L., Nicolet, M.-A., Appl. Phys. Lett. 47, 800 (1985).CrossRefGoogle Scholar
3. Limoge, Y., Brebec, G., Adda, Y., Diffusion and Defect Monographs Series Vol. 7, 185 (1983), Ed. Kedves, F. J., Beke, D. L..Google Scholar
4.See e.g., Properties of Atomic Defects in Metals, ed. Peterson, N. L. and Siegel, R. W. (North Holland, Amsterdam, 1978).Google Scholar
5. Adda, Y., Beyeler, M., Brebec, G., Thin Solid Films 25, 107 (1975).CrossRefGoogle Scholar
6. Kim, S.-J., M-A. Nicolet, Averback, R. S., Peak, D., this conference.Google Scholar
7. Besenbacher, F., Bottiger, J., Nielsen, S. K., Whitlow, H. J., Appl. Phys. A 29, 141 (1982).CrossRefGoogle Scholar
8. Paine, B. M. and Averback, R. S., Nucl. Instr. and Meth. B 7/8, 666 (1985).CrossRefGoogle Scholar
9. Rossum, M. Van, Cheng, Y.-T., Johnson, W. L., Nicolet, M-A., Appl. Phys. Lett.Google Scholar
10. Johnson, W. L., Cheng, Y.-T., Rossum, M. Van, Nicolet, M-A., Nucl. Instr. and Meth. B 7/8, 657 (1985).CrossRefGoogle Scholar
11. Atzmon, M., Unruh, K. M., Johnson, W. L., J. Appl. Phys. 58, 3865 (1985).CrossRefGoogle Scholar
12. Brimhall, J. L., Nucl. Instr. and Meth. B 7/8, 26 (1985).CrossRefGoogle Scholar
13. Biersack, J., Haggmark, L. G., Nucl. Instr. and Meth. 174, 257 (1980).CrossRefGoogle Scholar
14. Averback, R. S., Peak, D., Appl. Phys. A 38, 139 (1985).CrossRefGoogle Scholar