Hostname: page-component-848d4c4894-2xdlg Total loading time: 0 Render date: 2024-06-23T05:13:32.940Z Has data issue: false hasContentIssue false

Ion Beam Mixing and Thermal Demixing of Co/Cu Multilayers

Published online by Cambridge University Press:  10 February 2011

M. Cai
Affiliation:
Département de physique et Groupe de recherche en physique et technologie des couches minces, Université de Montréal, C.P. 6128, succ. Centre-Ville, Montréal, Canada H3C 3J7
T. Veres
Affiliation:
Département de physique et Groupe de recherche en physique et technologie des couches minces, Université de Montréal, C.P. 6128, succ. Centre-Ville, Montréal, Canada H3C 3J7
R. W. Cochrane
Affiliation:
Département de physique et Groupe de recherche en physique et technologie des couches minces, Université de Montréal, C.P. 6128, succ. Centre-Ville, Montréal, Canada H3C 3J7
S. Roorda
Affiliation:
Département de physique et Groupe de recherche en physique et technologie des couches minces, Université de Montréal, C.P. 6128, succ. Centre-Ville, Montréal, Canada H3C 3J7
R. Abdouche
Affiliation:
Department of Physics and Center for Physics of Materials, McGill University, Montrdal, Canada, H3A 2T8.
M. Sutton
Affiliation:
Department of Physics and Center for Physics of Materials, McGill University, Montrdal, Canada, H3A 2T8.
Get access

Abstract

X-ray reflectivity and magnetotransport studies have been used to probe the effects of ion-beam irradiation and subsequent thermal annealing on the structure and giant magnetoresistance (GMR) in Co/Cu multilayers. Low-dose ion bombardment produces interfacial mixing which is accompanied by a systematic suppression of the anti ferromagnetic (AF) coupling and the GMR. For ion doses not exceeding 5 × 1014 ions/cm2, subsequent thermal annealing restores the abrupt interlayer structure as well as the GMR. The combination of low-dose ion bombardment and thermal annealing provides an ex situ technique to modify interface structure reversibly over a gnificant range.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Baibich, M.N., Broto, J.M., Fert, A., Nguyen Van Dau, F., Petroff, F., Etienne, P., Creuzet, G., Friederich, A. and Chazelas, J., Phys. Rev. Lett. 61, 2472 (1988).Google Scholar
2. Susuki, M. and Taga, Y., Phys. Rev. B52, 361 (1995); J. Appl. Phys. 74, 4661 (1993).Google Scholar
3. Fullerton, Eric E., Kelly, David M., Guimpel, J., Schuller, Ivan K., Phys. Rev. Lett. 68, 859 (1992).Google Scholar
4. Zhang, H., Cochrane, R.W., Huai, Y., Mao, M., Bian, X. and Muir, W.B., J. Appl. Phys. 75, 6535 (1994); H. Lailer and B.J. Hickey, ibid 79, 6250 (1996).Google Scholar
5. Cai, M., Veres, T., Roorda, S., Cochrane, R.W., Abdouche, R. and Sutton, M., J. Appl. Phys. 81, 5200 (1997).Google Scholar
6. Kelly, D.M., Schuller, I.K., Korenivski, K., Rao, K.V., Larsen, K.K., Bottinger, J., Gyorgy, E.M. and van Dover, R.B., Phys. Rev. B50 3481 (1994); K. Temst, G. Verbanck, R. Schad, G. Gladyszewski and M. Hennion, Physica B 234–236, 467 (1997).Google Scholar
7. Huai, Y., Cochrane, R.W. and Sutton, M., Phys. Rev. B48, 2568 (1993).Google Scholar
8. Ziegler, J.F. and Biersack, J.P., The Stopping and Range of Ions in Solids, Pergamon Press, New York, 1985.Google Scholar
9. Sigmund, P. and Gras-Marti, A., Nucl. Instrum. Methods 182/183, 25 (1993).Google Scholar
10. Kudrnovsky, J., Drchal, V., Turek, I., Sob, M., Weinberger, P., Phys. Rev. B53, 5125 (1996).Google Scholar