Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-26T03:59:34.524Z Has data issue: false hasContentIssue false

Investigations of Fe-Cr Ferritic Steels as Sofc Interconnect Material

Published online by Cambridge University Press:  10 February 2011

S. Linderoth
Affiliation:
Materials Research Department, RisØ National Laboratory, DK-4000 Roskilde, Denmark, soren.linderoth@risoe.dk
P. H. Larsen
Affiliation:
Materials Research Department, RisØ National Laboratory, DK-4000 Roskilde, Denmark, soren.linderoth@risoe.dk
Get access

Abstract

Pure Fe-Cr alloys with a Cr-content between zero and 60 wt% have been investigated with respect to their thermal expansion from room temperature to 1100°C and their corrosion resistance in air and humidified hydrogen up to 1300'C. The thermal expansion coefficient of the ferritic Fe-Cr steels is close to that of the supports used in the manufacture of thin-electrolyte cells. The corrosion resistance in air and humidified hydrogen appears to be best for a Cr content around 20 wt%. In addition, a ceria coating is found to reduce significantly the scale growth. Preliminary results for a Fe78Cr22 foil indicates that an electrical contact resistance less than 3 mQcm2 can be obtained between the alloy and a Ni/YSZ anode.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Minh, N.Q., J. Am. Ceram. Soc. 76, 563(1993).Google Scholar
2. Linderoth, S., Hendriksen, P.V., Mogensen, M., and Langvad, N., J. Mater. Sci. 31, 5077(1996).Google Scholar
3. Larsen, P.H., Bagger, C., Mogensen, M and Larsen, J.G., in Proc. Solid Oxide Fuel Cells IV, ed. Dokiya, M., Yamamoto, O., Tagawa, H. and Singhal, S.C.. (Electrochem. Soc., Pennington, 1995), Vol. PV95–1, p. 120.Google Scholar
4. Mori, K., Miyamoto, H., Takenobu, K., and Matsudaira, T., in Proc. Solid Oxide Fuel Cells V, ed. Stimming, U., Singhal, S.C., Tagawa, H., and Lehnert, W., (Electrochem. Soc., Pennington, 1997), Vol. PV–40, p. 1301.Google Scholar
5. Quadakkers, W.J., Greiner, H., and Köck, W., in Proc. 1st Eur. Solid Oxide Fuel Cell Forum, ed. Bossel, U. (Lucerne, 1994), p. 323.Google Scholar
6. Weiss, R., Peck, D., Miller, M., and Hilpert, K., in Proc.17th Risø Int. Symp. on Materials Science: High Temperature Electrochemistry: Ceramics and Metals, edited by Poulsen, F.W., Bonanos, N., Linderoth, S., Mogensen, M., and B., Zachau-Christiansen (Risø National Laboratory, Roskilde, 1996), p. 479.Google Scholar
7. Quadakkers, W.J., Greiner, H., Kdck, W., Buchkremer, H.P., Hilpert, K., and Stéver, D., in Proc. 2nd Eur. Solid Oxide Fuel Cell Forum, ed. Thorstensen, B. (Oslo, 1996), p. 297.Google Scholar
8. Beie, H.J., Blum, L., Drenckhahn, W., Greiner, H., and Schichl, H., in Proc. 3rd Eur. Solid Oxide Fuel Cell Forum, ed. Stevens, P. (Nantes, 1998), Vol.1, p. 3.Google Scholar
9. Linderoth, S., Langvad, N., and Mogensen, G., in Proc. 17th Risø Int. Symp. on Materials Science: High Temperature Electrochemistry: Ceramics and Metals, edited by Poulsen, F.W., Bonanos, N., Linderoth, S., Mogensen, M., and B., Zachau-Christiansen (Risø National Laboratory, Roskilde, 1996), p. 351.Google Scholar
10. Mori, M., Yamamoto, T., Itoh, H., Inaba, H., and Tagawa, H., J. Electrochem. Soc. 145, 1374(1998).Google Scholar
11. Tietz, F., Dias, F.J., and Naoumidis, A., in Proc. 3rd Eur. Solid Oxide Fuel Cell Forum, ed. Stevens, P. (Nantes, 1998), Vol.1, p. 171.Google Scholar
12. Tedmon, C.S., J. Electrochem. Soc. 114, 788(1967).Google Scholar
13. Rhys-Jones, T.N., Grabke, H.J., and Kudielka, H., Werkstoffe und Korrosion 38, 65(1987).Google Scholar
14. Krikorian, O.H., Report No. UCRL-6132, 1960.Google Scholar
15. Hussey, R.J., Papaiacovou, P., Shen, J., Mitchell, D.F., and Graham, M.J., Mater. Sci. Eng. A120, 147 (1989).Google Scholar