Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-26T14:50:16.764Z Has data issue: false hasContentIssue false

Investigations of Buried Interfaces Using High Energy X-Ray Reflectivity

Published online by Cambridge University Press:  21 March 2011

F. Rieutord
Affiliation:
CEA-Grenoble, Département de Recherches Fondamentales F-38054 Grenoble Cedex 9, France
J. Eymery
Affiliation:
CEA-Grenoble, Département de Recherches Fondamentales F-38054 Grenoble Cedex 9, France
O. Plantevin
Affiliation:
CEA-Grenoble, Département de Recherches Fondamentales F-38054 Grenoble Cedex 9, France
B. Bataillou
Affiliation:
CEA-Grenoble, Département de Recherches Fondamentales F-38054 Grenoble Cedex 9, France
D. Buttard
Affiliation:
CEA-Grenoble, Département de Recherches Fondamentales F-38054 Grenoble Cedex 9, France
F. Fournel
Affiliation:
CEA-Grenoble, Département de Recherches Fondamentales F-38054 Grenoble Cedex 9, France
Get access

Abstract

X-ray reflectivity using high-energy X-rays allows one to characterize interfaces between thick materials at nanometer scale. The technique combines the high penetration of X-rays allowing the crossing of the radiation through large thicknesses of material with the interface sensitivity of grazing angle techniques. In the case of a buried interface between two thick materials, the beam enters the sample through the side of one material and contributions of external surfaces are suppressed. Then, the technique is sensitive to the interface structure only. Examples are given using wafer bonding interfaces, both in the hydrophilic case (as used e.g. in Silicon-On-Insulator substrate fabrication) and in the hydrophobic case (Silicon/Silicon bonding).

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Bruel, M. Electron.Lett. 31 1201(1995).Google Scholar
2. Bruel, M., Aspar, B. and Auberton-Hervé, A.J., Jpn. J. Appl. Phys., 36, 1636 (1997).Google Scholar
3. Rieutord, F., Eymery, J., Fournel, F., Buttard, D., Oeser, R., Plantevin, O., Moriceau, H., and Aspar, B., Phys. Rev.B, vol. 63, pp. 125408, (2001).Google Scholar
4. Stengl, R., Tan, T. and Gösele, U., Jpn J. Appl. Phys., 28, 1735 (1989).Google Scholar