Hostname: page-component-848d4c4894-r5zm4 Total loading time: 0 Render date: 2024-06-25T18:39:23.619Z Has data issue: false hasContentIssue false

Investigation on C54 nucleation and growth by micro-Raman imaging

Published online by Cambridge University Press:  14 March 2011

Stefania Privitera
Affiliation:
INFM and Physics Department, Catania University, Corso Italia 57, 95129 Catania, Italy
Francesco Meinardi
Affiliation:
INFM and Materials Science Department, Milano-Bicocca University, Via Cozzi 53, 20125 Milano, Italy
Simona Quilici
Affiliation:
INFM and Materials Science Department, Milano-Bicocca University, Via Cozzi 53, 20125 Milano, Italy
Francesco La Via
Affiliation:
CNR-IMETEM, Stradale Primosole 50, 95121Catania, Italy
Corrado Spinella
Affiliation:
CNR-IMETEM, Stradale Primosole 50, 95121Catania, Italy
Maria Grazia Grimaldi
Affiliation:
INFM and Physics Department, Catania University, Corso Italia 57, 95129 Catania, Italy
Emanuele Rimini
Affiliation:
INFM and Physics Department, Catania University, Corso Italia 57, 95129 Catania, Italy
Get access

Abstract

The processes of nucleation and growth of the C54 TiSi2 phase into the C49 phase in thin films have been studied by electrical measurements and micro-Raman spectroscopy. The Raman spectra have been acquired scanning large silicide areas (100×50 μm2) in step of 0.5 μm. Images showing the evolution of the C54 grains during the transition have been obtained for temperatures between 680 and 720 °C and the transformed fraction, the density and the size distribution of the C54 grains have been measured as a function of the temperature and the annealing time. The activation energies for the nucleation rate and the growth velocity have been determined obtaining values of 4.9 ± 0.7 eV and 4.5 ± 0.9 eV, respectively.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Maex, K., Mater. Sci, Eng., R 11 (1993) 53.Google Scholar
2. Meinardi, F., Moro, L., , Sabbadini and , Queirolo, Europhys. Lett., 44, 57 (1998)Google Scholar
3. Wolf, DeWolf I. De, Howard, D.J., Lawers, A., Maex, K. and Maes, H. E. Appl. Phys. Lett. 70 (1997) 2262 Google Scholar
4. Lim, H. E., Karunasiri, G., Chua, S. J., Wong, H., Pey, H. L. and Lee, K. H. IEEE Elect. Dev. Lett., 19 (1998) 171 Google Scholar
5. Meinardi, F., Quilici, S., Borghesi, A., Artioli, G. Appl. Phys. Lett. 75 (1999) 3090.Google Scholar
6. Jeon, H., Sukow, C.A., Honeycutt, J. W., Rozgonyi, G. A. and Nemanich, R. J., J. Appl. Phys. 71 (1992) 4269.Google Scholar
7. Ma, Z. and Allen, L.H., Phys. Rev. B, 49, 13501 (1994).Google Scholar
8. Ma, Z., Allen, L.H. and Allman, D. D. J., J. Appl. Phys., 77, 4384 (1995).Google Scholar
9. Spinella, R. C., Lombardo, S., and Priolo, F., J. Appl. Phys., 84, 5383 (1998).Google Scholar
10. Christian, J. W., The theory of Transformation in Metals and Alloys, Part. I 2nd ed., Pergamon, (Oxford, 1995).Google Scholar
11. Shneidman, V. A., Sov. Phys. Tech. Phys., 32, 76 (1987).Google Scholar
12. Shneidman, V. A., Sov. Phys. Tech. Phys., 33, 1338 (1988).Google Scholar
13. Gignac, L. M., Svilan, V., Clevenger, L. A., Cabral, C. Jr., and Lavoie, C., MRS Proceed., 441, 255 (1997).Google Scholar
14. Privitera, S., Via, F. La, Grimaldi, M. G. and Rimini, E., Appl. Phys. Lett., 73, 3863 (1998).Google Scholar