Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-26T10:30:05.651Z Has data issue: false hasContentIssue false

Investigation of the Hydrogen Content of Silicon in an Integrated Rapid Thermal Processing Reactor

Published online by Cambridge University Press:  22 February 2011

M. A. George
Affiliation:
Dept. of Chemical Engineering, Lehigh University, Bethlehem, PA.
S. E. Beck
Affiliation:
Air Products and Chemicals Inc, Allentown, PA.
D. A. Bohling
Affiliation:
Air Products and Chemicals Inc, Allentown, PA.
G. A. Hames
Affiliation:
Dept. of Electrical Engineering, North Carolina State University, Raleigh, NC.
J. J. Wortman
Affiliation:
Dept. of Electrical Engineering, North Carolina State University, Raleigh, NC.
J. A. Melzak
Affiliation:
Dept. of Electrical Engineering, Case Western Reserve University, Cleveland, OH.
Get access

Abstract

The effects of H2 and H atoms on electronic properties of crystalline silicon is of great interest to many scientists and technologists involved in developing and manufacturing of microelectronic devices. Hydrogen is of interest because of its ability to interact with defects and impurities in single crystal silicon, its abundance in many processing steps, and its effect on electronic structure of the interface between Si and SiO2. Here we present results of experiments examining the gas phase concentration of impurities during thermal oxidation and annealing of p(100) silicon. These experiments reveal that a significant quantity of hydrogen is contained in virgin wafers, which may have significant impact on thermal processing. A brief review of studies done on hydrogen diffusion in p-type silicon is provided with a perspective to the process investigated here.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Defects in Semiconductors 16, edited by Davies, G., DeLeo, G.G., and Stavola, M., Proceedings of the 16th International Conference, Part 1, Trans Tech, Zurich, Switzeland, 1992.Google Scholar
2. Revesz, A. G., J. Electrochem. Soc. Solid-State Science an Technology, 1, 122, (1979).Google Scholar
3. Ohmi, T., Morita, M., Teramoto, A., Makihara, K., and Tseng, K.S., Appl. Phys. Lett., 60 (17), 2126(1992).Google Scholar
4. Nishioka, Y., Ohji, Yl, Yoshida, I., Mukai, K, and Sugano, T., J. Appl. Phys., 67 (8), 3903 (1990).Google Scholar
5. Sah, C.T., Sun, J.Y.C. and Tzou, J.J. T., Appl. Phys. Lett. 43, 204.Google Scholar
6. George, M.A., Bohling, D.A., Wortman, J.J., Hames, G.A., and Melzak, J. A., to be published in the Journal of Vacuum Science and Technology, Feb. 1993.Google Scholar
7. Keidel, F.A., Analytical Chemistry, 31, 2043, (1959)Google Scholar
8. Smith, F.W. and Ghidini, G., J. Elctrochem. Soc. Solid-State Science and Technology, 129 (6), 1300, (1982).Google Scholar
9. Grunder, M. and Jacob, J., Appl. Phys. A., 39 (2), 73, (1986).Google Scholar
10. Hossain, S.D., Pantano, C.G., Ruzyllo, J., J. Electrochem. Soc, 132 (10), 3287, (1990).Google Scholar
11. Pearton, S.J., Corbett, J. W., and Shi, T. S., Appl. Phys. A, 43, 153 (1987).Google Scholar
12. Chantre, A., Bouchet, L., and Andre, E., J. Electrochem. Soc. 135 (11), 2867, (1988).Google Scholar
13. Tomita, H., Kikuchi, T., and Furuya, K., Jap. Appl. Phys., 30 (5), 897, (1991).Google Scholar
14. Van Wieringen, A. and Warmoltz, N., Physica, 22, 849 (1956).Google Scholar
15. Ichimiya, T. and Furuichi, A., Int. J. Appl. Rad. Isotopes 19, 573, (1968).Google Scholar
16. Newman, R.C., Tucker, J.H., Brown, A. R., and McQuaid, S. A., J. Appl. Phys. 70 (6), 3061, (1991).Google Scholar
17. Pankove, J.I., Magee, C.W., and Wance, R.O., Appl. Phys. Lett. 47, 748.Google Scholar
18. Hydrogen in Semiconductors, edited by Pankove, J.I. and Johnson, N. M., Academic Press, New York, 1991, page 285.Google Scholar
19. Seager, C. H. and Anderson, R.A., Appl. Phys. Lett. 53, 1181,(1988).Google Scholar
20. Van de Walle, C. G., Physica B, 107, 2122, (1991).Google Scholar
21. Van de Walle, C. G., Denteneer, P. J. H., Bar-Yam, Y., and Pantelides, S. T., Physical Review B, 39, 15, 1989.Google Scholar
22. Hydrogen in Crystalline Semiconductors, Pearton, S.J., Corbett, J.W. and Stavola, M., Springer-Verlag, New York, 1992, Chapter 9.Google Scholar
23. Hansen, W.L., Pearton, S.J., and Haller, E.E., Appl. Phys. Lett., 44 (6), 606, (1984).Google Scholar
24. Capizza, M. and Mittiga, A., Physica B, 146, 19 (1987).Google Scholar
25. Deal, B.E. and Grove, A.S., J. Appl. Phys., 36 (12), 3770, (1965).Google Scholar
26. Dunham, S.T., J. Electrochem. Soc, 136 (1), 250, (1989).Google Scholar