Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-19T21:36:52.262Z Has data issue: false hasContentIssue false

Investigation of Strain Accommodation upon Phase Transformation of Small Inclusions in Aluminum

Published online by Cambridge University Press:  15 March 2011

L. H. Zhang
Affiliation:
National Center for Electron Microscopy, Lawrence Berkeley National Laboratory, Berkeley, CA94720, USA
E. Johnson
Affiliation:
Nano Science Center, Niels Bohr Institute, University of Copenhagen, and Department of Materials Research, RISØ National Laboratory, Denmark
U. Dahmen
Affiliation:
National Center for Electron Microscopy, Lawrence Berkeley National Laboratory, Berkeley, CA94720, USA
Get access

Abstract

The evolution of elastic strain caused by melting and solidification of small inclusions in aluminum was investigated by in-situ transmission electron microscopy. The appearance and subsequent decay of elastic strain during phase transformation of inclusions around 100nm in size were observed directly, and the decay rate was determined as a function of temperature. The mechanism of strain accommodation was studied by determining the activation energy of the process using alloy composition and inclusion size to control the transformation temperature.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Hagège, S. and Dahmen, U.. Phil. Mag. Lett. 74, 259266(1996).Google Scholar
2 Rühle, M. and Kriven, W.M.. Ber. Bunsenges. Phys. Chem. 87, 222228(1983).Google Scholar
3 Mader, W. and Rühle, M.. Proceedings of the Institute of Physics Electron Microscopy and Analysis Group Conference (London, 1983) pp.385388.Google Scholar
4 Goswami, R., Chattopadhyay, K. and Ryder, P.L.. Acta mater. 46, 42574271(1998).Google Scholar
5 Allen, G.L., Gile, W.W., and Jesser, W.A.. Acta Metall. 28, 16951701(1980).Google Scholar
6 Dahmen, U., Xiao, S. Q., Paciornik, S., Johnson, E. and Johansen, A.. Phy. Rev. Lett., 78, 471474(1997).Google Scholar
7 Mullins, W. W. and Rohrer, G. S.. J. Am. Ceram. Soc. 83, 214–16(2000).Google Scholar
8 Combe, N., Hensen, P. and Pimpinelli, A.. Phy. Rev. Lett., 85, 110113(2000).Google Scholar
9 Dahmen, U., Hagege, S., Faudot, F., Radetic, T. and Johnson, E.. Philo. Mag., in press (2004).Google Scholar
10 Ashby, M. F. and Brown, L.M.. Phil. Mag. 8, 1083 (1963).Google Scholar
11 Ashby, M. F. and Brown, L.M.. Phil. Mag. 8, 1649 (1963).Google Scholar
12 Smallman, R. E.. Modern Physical Metallurgy. Butterworths (1985).Google Scholar
13 Malhotra, A. K. and Aken, D. C. Van. Phil. Mag. A. 71, 949964(1995).Google Scholar
14 Volin, T. E. and Balluffi, R. W.. Phys. Stat. Solidi. 25, 163173(1968)Google Scholar
15 Peck, R. L. and Westmacott, K. H.. Metal Science. 9, 283288(1975).Google Scholar
16 Peck, R. L. and Westmacott, K. H.. Metal Science Journal. 5, 155159 (1971).Google Scholar
17 Dobson, P. S., Goodhew, P.J., and Smallman, R.E.. Phil. Mag. 16, 922(1967).Google Scholar
18 Smallman, R. E. and Westmacott, K. H.. Mater. Sci. & Eng. 9, 249272(1972).Google Scholar
19 Hren, J. J., Goldstein, J. I. and Joy, D.C.. Introduction to Analytical Electron Microscopy (New York, 1979). Vol.9, pp.447.Google Scholar
20 Butler, E. P. and Hale, K.F.. Dynamical Experiments in the Electron Microscope in Practical Methods in Electron Microscopy (1981, Amsterdam), 9, pp.1822; R.H. Brickness and J.W. Edington. Acta Metall. 25, 447-458(1977).Google Scholar