Skip to main content Accessibility help
×
Home

Investigation of Polymer Micro-Actuators Based on Electrostrictive Poly(vinylidene fluoride-trifluoroethylene) Copolymers

  • Tian-bing Xu (a1), Feng Xia (a2), Z.-Y. Cheng (a2) and Q. M. Zhang (a2)

Abstract

Micromachined actuators based on the electrostrictive P(VDF-TrFE) copolymer, which possesses a high strain (∼5%) and high elastic energy density (∼ 1 J/cm3), have been designed and fabricated. The performance of the devices have been characterized and modeled in terms of the properties of the copolymer and dimensions of the devices. The experimental results on the device responses under high AC fields (electrostrictive mode), weak AC fields in DC field biased state, and frequency dependence, are very close to the modeling results. Due to the large field induced strain and high frequency capability of the electrostrictive P(VDF-TrFE), the device possesses the capability of operation at non-resonance mode with high displacement and force output, and hence, the device is capable to be used over a broad frequency range. For example, for a device of 1 mm lateral dimension, the displacement output can reach more than 50 μm and the ratio of the displacement/applied voltage is more than 20 nm/Vrms. Furthermore, over more than 3 frequency decades (up to 100 kHz), the dispersion of the displacement is less than 20%. The observed performance of the devices indicates that this class of the electrostrictive P(VDF-TrFE) based micro-actuators is attractive for micropumps and valves.

Copyright

References

Hide All
1. Polla, D. L., Erdman, A. G., Robbins, W. P., Markus, D. T., Diaz-Diaz, J., Rizq, R., Nam, Y., Brickner, H. T., Wang, A., Krulevitch, P., Annu. Rev. Biomed. Eng. 2: 551 (2000).
2. van den Berg, A. and Lammerink, T.S.J., Top. Curr. Chem. 194: 21 (1998).
3. Becker, H. and Locascio, L. E., Talanta 56, 267 (2002).
4. Joung, J., Shen, J., and Grodzinski, P., IEEE Trans. Magnt. 36, 2012 (2000).
5. Benard, W. L., Kahn, H., Heuer, A. H., and Huff, M. A., J. MEMS. 7, 245 (1998).
6. Jager, E.W.H., Smela, E., and Inganas, O., Science 290, 1540 (2000).
7. Zhang, Q. M., Bharti, V., and Zhao, X., Science, 280, 2101 (1998).
8. Cheng, Z.-Y., Bharti, V., Xu, T.-B., Xu, H.S., Mai, T., and Zhang, Q.M., Sens. Actuators A 90, 138 (2001).
9. Xia, F., Cheng, Z.-Y., Xu, H. S., Li, H. F., Zhang, Q. M., Kavarnos, G. J., Ting, Robert Y., Abdel-Sadek, G., and Belfield, K. D., Adv. Mater. 14 (21): 1574 (2002).
10. Rashidian, B. and Allen, M. G., Proc. ASME DSC, 32, 171 (1991).
11. Mo, J.-H., Robinson, A. L., Fitting, D. E., Terry, F. L., and Carson, P. L., IEEE Trans. Electron Devices 37, 134 (1990).
12. Madou, M., Fundamentals of Microfabrication, (CRC Press, New York, 1997) p. 145.
13. Walsh, R. A., Electromechanical design handbook, (McGRAW-HILL, 2000) p. 5.34.
14. Blevins, R. D., Formulas for natural frequency and mode shape, (Krieger Publishing Company, Florida, 1995) p. 413.

Investigation of Polymer Micro-Actuators Based on Electrostrictive Poly(vinylidene fluoride-trifluoroethylene) Copolymers

  • Tian-bing Xu (a1), Feng Xia (a2), Z.-Y. Cheng (a2) and Q. M. Zhang (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed