Skip to main content Accessibility help
×
Home

Investigation of Polymer Dendritic Growth in Composite Material using Contact Resonance Method

  • Ravi Gaikwad (a1), Xunchen Liu (a1), Priyesh Dhandharia (a1) and Thomas Thundat (a1)

Abstract

A special class of polymer called dendrons which are repeatedly branched polymers linked together by a network of cascade branched monomers. A composite of these dendritic polymers with linear polymers may have unique physical and chemical properties. Using contact resonance mode of atomic force microscopy we are able to detect the viscoelastic properties of the dendritic formation of the polyethylene oxide (PEO) mixed with Polyvinylpyrrolidone (PVP). PEO is known to form nanometric crystallites due to the diffusion limited aggregation process. However, the dendritic formation in the mixture has not been reported before. The amplitude and phase of the contact resonance shows a clear dendritic growth of PEO in the composite material. The extent of the polymer crystallization can be several nanometers thick within the composite material. Additionally, the intrinsic properties of such polymers to form denrimers can be explored for fabricating polymer composites having numerous potential applications in chemical sensing, drug-delivery, energy applications and many more.

Copyright

References

Hide All
[1] Binnig, G., Quate, C., Gerber, C., Phys. Rev. B 56 (1986) 930.
[2] Platz, D., Tholén, E. a, Hutter, C., von Bieren, A.C., Haviland, D.B., Ultramicroscopy 110 (2010) 573.
[3] Bar, G., Thomann, Y., Brandsch, R., Cantow, H., Carolina, N., Langmuir 7463 (1997) 3807.
[4] Yamanaka, K., Maruyama, Y., Tsuji, T., Nakamoto, K., Appl. Phys. Lett. 78 (2001) 1939.
[5] Cuberes, M.T., Assender, H.E., Briggs, G.A.D., V Kolosov, O., J. Phys.D Appl. Phys. 33 (2000) 2347.
[6] Rabe, U., Arnold, W., Appl. Phys. Lett. 64 (1994) 1493.
[7] Cuenot, S., Frétigny, C., Demoustier-Champagne, S., Nysten, B., J. Appl. Phys. 93 (2003) 5650.
[8] Killgore, J.P., Yablon, D.G., Tsou, A H., Gannepalli, A, Yuya, P. A, Turner, J. A, Proksch, R., Hurley, D.C., Langmuir 27 (2011) 13983.
[9] Gannepalli, A., Yablon, D.G., Tsou, A H., Proksch, R., Nanotechnology 22 (2011) 355705.
[10] Stan, G., Cook, R.F., Nanotechnology 19 (2008) 235701.
[11] Street, S.G., Ia, M.S.S., Polymer (Guildf). 33 (1992) 432.
[12] Hobbs, J.K., Vasilev, C., Humphris, A.D.L., Polymer (Guildf). 46 (2005) 10226.
[13] Feng, X.-S., Taton, D., Chaikof, E.L., Gnanou, Y., J. Am. Chem. Soc. 127 (2005) 10956.
[14] Wang, M., Braun, H.-G., Meyer, E., Polymer (Guildf). 44 (2003) 5015.
[15] Reiter, G., Sommer, J.-U., Phys. Rev. Lett. 80 (1998) 3771.
[16] Reiter, G., Sommer, J.-U., J. Chem. Phys. 112 (2000) 4376.
[17] Sommer, J.-U., Reiter, G., J. Chem. Phys. 112 (2000) 4384.

Keywords

Related content

Powered by UNSILO

Investigation of Polymer Dendritic Growth in Composite Material using Contact Resonance Method

  • Ravi Gaikwad (a1), Xunchen Liu (a1), Priyesh Dhandharia (a1) and Thomas Thundat (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.