Skip to main content Accessibility help
×
Home

Investigation of NBTI Recovery During Measurement

  • Robert Entner (a1), Tibor Grasser (a2), Hubert Enichlmair (a3) and Rainer Minixhofer (a4)

Abstract

In this work we present a rigorous investigation of the negative bias temperature instability (NBTI) recovery process during measurement intervals in comparison to the numerical solution of an extended reaction-diffusion (RD) model. In contrast to previous work, the RD model has been implemented in a multi-dimensional device simulator and is solved self-consistently together with the semiconductor device equations. This allows us to directly use many commonly approximated quantities such as the oxide electric field and the interface hole concentration in a self-consistent manner. In addition, the influence of the trapped charges can be more accurately considered by using a distributed Shockley-Read-Hall interface trap-charge model which has been coupled to the RD model. Thus, due to the self-consistent solution procedure, also the feedback of these charged interface-states on the Poisson equation is considered which influences the observed threshold voltage shift. Experimental data confirm the model which has been calibrated to a wide range of temperatures using a single set of parameters.

Copyright

References

Hide All
1 Shockley, W. and Read, W. T., “Statistics of the Recombinations of Holes and Electrons”, Phys.Rev., vol. 87, no. 5, pp. 835842, 1952.
2 Hall, R. N., “Electron-Hole Recombination in Germanium”, Phys.Rev., vol. 87, no. 2, p. 387, 1952.
3 Kaczer, B., Arkhipov, V., Degraeve, R., Collaert, N., Groeseneken, G., and Goodwin, M., “Disorder-Controlled-Kinetics Model for Negative Bias Temperature Instability and Its Experimental Verification”, Proc. Intl.Rel.Phys.Symp., pp. 381387, 2005.
4 Ershov, M., Lindley, R., Saxena, S., Shibkov, A., Minehane, S., Babcock, J., Winters, S., Karbasi, H., Yamashita, T., Clifton, P., and Redford, M., “Transient Effects and Characterization Methodology of Negative Bias Temperature Instability in pMOS Transistors”, Proc. Intl.Rel.Phys.Symp., pp. 606607, 2003.
5 Jeppson, K. and Svensson, C., “Negative Bias Stress of MOS Devices at High Electric Fields and Degradation of MNOS Devices”, J.Appl.Phys., vol. 48, no. 5, pp. 20042014, 1977.
6 Alam, M. and Mahapatra, S., “A Comprehensive Model of PMOS NBTI Degradation”, Microelectron.Reliab., vol. 45, no. 1, pp. 7181, 2005.
7 Ogawa, S. and Shiono, N., “Generalized Diffusion-Reaction Model for the Low-Field Charge Build Up Instability at the Si/SiO2 Interface”, Phys.Rev.B, vol. 51, no. 7, pp. 42184230, 1995.
8 Arkhipov, V. and Rudenko, A., “Drift and Diffusion in Materials with Traps”, Philos.Mag.B, vol. 45, no. 2, pp. 189207, 1982.
9 Noolandi, J., “Multiple-Trapping Model of Anomalous Transit-Time Dispersion in a-Se”, Phys.Rev.B, vol. 16, no. 10, pp. 44664473, 1977.
10 Edwards, A., “Interaction of H and H2 with the Silicon Dangling Orbital at the <111> Si/SiO2 Interface”, Phys.Rev.B, vol. 44, no. 4, pp. 18321838, 1991.
11 Lenahan, P. and Conley, J. Jr, “What Can Electron Paramagnetic Resonance Tell Us about the Si/SiO2 System?”, Vac.Sci.Technol.B, vol. 16, no. 4, pp. 21342153, 1998.
12 Mahapatra, S., Alam, M., Kumar, P., Dalei, T., Varghese, D., and Saha, D., “Negative Bias Temperature Instability in CMOS Devices”, Microelectronic Engineering, vol. 80, no. Suppl., pp. 114121, 2005.
13 Huard, V., Denais, M., and Parthasarathy, C., “NBTI degradation: From Physical Mechanisms to Modelling”, Microelectron.Reliab., vol. 46, no. 1, pp. 123, 2006.
14 Kaczer, B., Arkhipov, V., Degraeve, R., Collaert, N., Groeseneken, G., and Goodwin, M., “Temperature Dependence of the Negative Bias Temperature Instability in the Framework of Dispersive Transport”, Appl.Phys.Lett., vol. 86, no. 14, pp. 13, 2005.

Keywords

Related content

Powered by UNSILO

Investigation of NBTI Recovery During Measurement

  • Robert Entner (a1), Tibor Grasser (a2), Hubert Enichlmair (a3) and Rainer Minixhofer (a4)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.