Hostname: page-component-77c89778f8-swr86 Total loading time: 0 Render date: 2024-07-17T10:42:20.013Z Has data issue: false hasContentIssue false

Investigation of Grain Boundary Migration in Situ by Synchrotron X-Ray Topography

Published online by Cambridge University Press:  21 February 2011

C. L. Bauer
Affiliation:
Carnegie Mellon University, Pittsburgh, PA 15213 USA
J. Gastaldi
Affiliation:
Centre de Recherche sur les Mecanismes de la Croissance Cristalline, 13288 Marseille, France
C. Jourdan
Affiliation:
Centre de Recherche sur les Mecanismes de la Croissance Cristalline, 13288 Marseille, France
G. Grange
Affiliation:
Centre de Recherche sur les Mecanismes de la Croissance Cristalline, 13288 Marseille, France
Get access

Abstract

Grain boundary migration has been investigated in prestrained monocrystalline specimens of aluminum in situ, continuously and at temperatures ranging from 415 to 610°C by synchrotron (polychromatic) x-ray topography (SXRT). In general, new (recrystallized) grains nucleate at prepositioned surface indentations and expand into the prestrained matrix, revealing complex evolution of crystallographic facets and occasional generation of (screw) dislocations in the wake of the moving boundaries. Analysis of corresponding migration rates for several faceted grain boundaries yields activation energies ranging from 56 to 125 kCal/mole, depending on grain boundary character. it is concluded that grain boundary mobility is a sensitive function of grain boundary inclination, resulting in ultimate survival of low-mobility (faceted) inclinations as a natural consequence of growth selection. Advantages and disadvantages associated with measurement of grain boundary migration by SXRT are enumerated and corresponding results are interpreted in terms of fundamental relationships between grain boundary structure and corresponding migration kinetics.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Recrystallization of Metallic Materials, Haessner, F., Ed., Riederer Veriag GmbH, Stuttgart (1978).Google Scholar
2. King, A. H. and Smith, D. A. in Grain Boundary Structure and Kinetics, Balluffi, R. W., Ed., American Society for Metals (1980).Google Scholar
3. Gastaldi, J. and Jourdan, C., J. Crystal Growth 52, 361 (1981).CrossRefGoogle Scholar
4. Gastaldi, J., Jourdan, C., Grange, G. and Bauer, C. L., Proceedings of the 1988 Spring Meeting of the Materials Research Society (in press).Google Scholar
5. Gastaldl, J., Jourdan, C., Grange, G. and Bauer, C. L., phy. stat. sol. (in press).Google Scholar
6. Gastaldi, J. and Jourdan, C., phy. stat. sol. (a) 49, 529 (1978).CrossRefGoogle Scholar
7. Gastaldi, J., Jourdan, C., Marzo, P., Allasia, C. and Jullien, J. N., J. Appi. Cryst. 18, 77 (1982).CrossRefGoogle Scholar
8. Gastaldi, J. and Jourdan, C., phy. stat. sol. (a) 97, 361 (1986).Google Scholar
9. Gastaldi, J. and Jourdan, C. in Applications of X-Ray Topographic Methods to Materials Science, Weissman, S. and Petroff, J. F., Eds., Plenum Press (1984).Google Scholar
10. Gastaldi, J., Jourdan, C. and Grange, G., Phil. Mag. A, 971 (1988).Google Scholar
11. Gordon, P. and Vandermeer, R. A., Trans. AIME 224, 917 (1962).Google Scholar
12. Frols, C. and Dklmtrov, O., Mem. Sci. Rev. Met. 59, 643 (1962).Google Scholar
13. Rath, B. B. and Hu, H., Trans. AIME 236, 1193 (1966).Google Scholar
14. Demianczuk, D. W. and Aust, K. T., Acta Met. 23, 1149 (1975).CrossRefGoogle Scholar
15. Masteller, M. S. and Bauer, C. L., Acta Met. 27, 483 (1979).CrossRefGoogle Scholar
16. Fridman, E. M., Kopetskii, Ch. V. and Shvindlerman, L. S., Soviet Phys. Solid State 16, 1152 (1974).Google Scholar
17. Gastaidi, J. and Jourdan, C., Phil. Mag. A 50, 309 (1984).CrossRefGoogle Scholar