Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-26T17:10:53.962Z Has data issue: false hasContentIssue false

Investigation of Electronic Surface States and its Correlation to Surface Modifications in Femtosecond UV-Laser Treated n(100) GaAs

Published online by Cambridge University Press:  10 February 2011

T. A. Railkar
Affiliation:
Materials and Manufacturing Research Laboratory (MRL), University of Arkansas, Fayetteville AR 72701
A. P. Malshe
Affiliation:
Materials and Manufacturing Research Laboratory (MRL), University of Arkansas, Fayetteville AR 72701
W. D. Brown
Affiliation:
Materials and Manufacturing Research Laboratory (MRL), University of Arkansas, Fayetteville AR 72701
S. S. Hullavarad
Affiliation:
Department of Physics, University of Pune, Pune 411007, INDIA
S. V. Bhoraskar
Affiliation:
Department of Physics, University of Pune, Pune 411007, INDIA
Get access

Abstract

Gallium arsenide (GaAs) is an important III-V semiconductor, due to its applicability to several high-end and consumable electronic devices. However, GaAs, unlike silicon (Si), does not have a stable native oxide that can stabilize and protect the surface from further oxidation and degradation. In this paper, we report the use of femtosecond laser-based modification of the GaAs surface, leading to its stabilization against oxidation, the use of ultrafast laser-based processing and its effectiveness compared to conventional laser treatment. One of the prominent advantages of ultrafast lasers include an almost non-existent heat affected zone (HAZ). The surface stabilizing and passivating effects were confirmed by depth-profiling x-ray photoelectron spectroscopic (XPS) measurements, atomic force microscopy (AFM) measurements, and a surface sensitive spectroscopic technique called thermally stimulated exoelectron emission (TSEE) measurements.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Weber, E. R., Ennen, H., Kaufmann, U., Windschief, J., Schneider, J. and Wronski, T., J. Appl. Phys. 53, 6140(1982).Google Scholar
2. Huber, A. M., Linh, N. T., Valladon, M., Debrun, J. L., Martin, G. M., Mittonneau, A. and Mircea, A., J. Appl. Phys. 50,4022 (1979).Google Scholar
3. Morrow, R. A., J. Appl. Phys. 69, 4306(1991).Google Scholar
4. Malshe, A. P., Railkar, T. A., Ozkan, A. M., Molian, P. A., Muyshondt, A. and Brown, W. D., Proceedings of the third Pacific Rim International Conference on Advanced Materials and Processing (PRICM3) p. 2195 (1998).Google Scholar
5. Wolfgang, Kautek and Jörg, Krüger, Proc. SPIE 2207, 600(1994).Google Scholar
6. Bhide, R. S., Bhoraskar, S. V. and Rao, V. J., J. Appl. Phys. 72, 1464(1992).Google Scholar
7. Sujak, B., Biernacki, L. and Gorecki, T., Acta Phys. Polon. 35, 475(1969).Google Scholar
8. Railkar, T. A., “Development of Thermally Stimulated Exoelectron Emission (TSEE) Spectroscopy for the characterization of surface and interface defects in silicon (Si) and Gallium Arsenide (GaAs)”, Ph. D. Thesis, University of Pune, Pune, India (1994).Google Scholar
9. Railkar, T. A., Bhide, R. S., Bhoraskar, S. V., Manorama, V. and Rao, V. J., J. Appl. Phys. 72 155 (1992).Google Scholar
10. Bhoraskar, S. V., Tejashree Bhave and Railkar, T. A., Bull. Mater. Sci. (India) 17, 523(1994).Google Scholar
11. Tarak Railkar, A., Bhoraskar, S. V., Dhole, S. D. and Bhoraskar, V. N., J. Appl. Phys. 74, 4343(1993).Google Scholar
12. Railkar, T. A., Bhoraskar, S. V. and Bhoraskar, V. N., Proc. of 11 th Int. Symp. on Exoelectron Emission and its Applications; Glucholazy (Poland), p. 119 (1994).Google Scholar
13. Shirk, M. D. and Molian, P. A., Journal of Laser Applications 10, 18(1998).Google Scholar
14. Randall, J. T. and Wilkins, M. H. F., Proc. Roy. Soc. Lond. 184, 366(1945).Google Scholar
15. Shiva Hullavarad, S., Bhoraskar, S.V. and Bose, D.N., J. Appl. Phys. 83, 5597(1997).Google Scholar
16. Tsing-Hua Her, Richard Finlay, J., Claudia Wu, Shrenik Deliwala and Eric Mazur. Appl. Phys. Lett. 73, 1673(1998).Google Scholar
17. Saeta, P., Wang, J.-K., Siegal, Y., Bloombergen, N. and Eric, Mazur Phys. Rev. Lett. 67, 1023(1991).Google Scholar