Skip to main content Accessibility help

Investigating Minority-Carrier Traps in p-type Cu(InGa)Se2 Using Deep Level Transient Spectroscopy

  • Steven W. Johnston (a1), Jehad A. M. AbuShama (a1) and Rommel Noufi (a1)


Measurements of p-type Cu(InGa)Se2 (CIGS) using deep-level transient spectroscopy (DLTS) show peaks associated with minority-carrier traps, even though data were collected using reverse bias conditions not favorable to injecting minority-carrier electrons. These DLTS peaks occur in the temperature range of 50 to 150 K for the rate windows used and correspond to electron traps having activation energies usually in the range of 0.1 to 0.2 eV for alloys of CIS, CGS, and CIGS. The peak values also depend on the number of traps filled. For short filling times of 10 μs to 100 μs, a small peak appears. As the DLTS filling pulse width increases, the peak increases in response to more traps being filled, but it also broadens and shifts to lower temperature suggesting that a possible series of trap levels, perhaps forming a defect band, are present. The peaks usually saturate in a timeframe of seconds. These filling times are sufficient for electrons to fill traps near the interface from the n-type side of the device due to a thermionic emission current. Admittance spectroscopy data for the same samples are shown for comparison.



Hide All
1 Ramanathan, K., Contreras, M. A., Perkins, C. L., S. Asher, Hasoon, F. S., Keane, J., Young, D., Romero, M., Metzger, W., Noufi, R., Ward, J., and Duda, A., Prog. Photovolt: Res. Appl. 11, 225 (2003).
2 Jiyon, S., Li, S. S., Huang, C. H., Anderson, T. J., and Crisalle, O. D., Proceedings of 3rd World Conference on Photovoltaic Energy Conversion, (IEEE Press, NJ, 2003) pp. 555558.
3 Lang, D. V., J. Appl. Phys. 45, 3023 (1974).
4 Weiss, S. and Kassing, R., Solid-State Electron. 31, 1733 (1988).
5 Blood, P. and Orton, J. W., The Electrical Characterization of Semiconductors: Majority Carriers and Electron States (Academic, San Diego, 1992).
6 Walter, T., Herberholz, R., Muller, C., and Schock, H. W., J. Appl. Phys. 80, 4411 (1996).
7 Yastrubchak, O., Wosinski, T., Makosa, A., Figielski, T., and Toth, A. L., Physica B 308-310, 757 (2001).
8 Herberholz, R., Igalson, M., and Schock, H. W., J. Appl. Phys. 83, 318 (1998).
9 Zabierowski, P., and Edoff, M., Thin Solid Films 480-481, 301 (2005).
10 Heath, J. T., Cohen, J. D., and Shafarman, W. N., J. Appl. Phys. 95, 1000 (2004).
11 Schroder, D. K., Semiconductor Material and Device Characterization (Wiley, New York, 1990).
12 Johnston, S. W., Kurtz, S., Friedman, D. J., Ptak, A. J., Ahrenkiel, R. K., and Crandall, R. S., Appl Phys. Lett. 86, 072109 (2005).
13SimWindows is a semiconductor device simulator originally developed at the Optoelectronics Computing Sytems Center at the University of Colorado, Boulder. Also, see
14 Wei, S. H. and Zunger, A., Appl. Phys. Lett. 63, 2549 (1993).
15 Schmid, D., Ruckh, M., and Schock, H. W., Solar Energy Materials and Solar Cells 41/42, 281 (1996).
16 Sze, S. M., Physics of Semiconductor Devices, 2nd ed. (Wiley, New York, 1981).
17 Kurtz, S., Johnston, S. W., and Branz, H. M., Appl. Phys. Lett. 86, 113506 (2005).


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed