Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-19T13:54:57.877Z Has data issue: false hasContentIssue false

Investigating Atomic Scale Phenomena at Materials Interfaces With Correlated Techniques in STEM/TEM

Published online by Cambridge University Press:  10 February 2011

N. D. Browning
Affiliation:
Department of Physics, University of Illinois, 845 W. Taylor St., Chicago, IL 60607-7059
A. W. Nicholls
Affiliation:
RRC, University of Illinois, 845 W. Taylor St., Chicago, IL 60607-7058
E. M. James
Affiliation:
Department of Physics, University of Illinois, 845 W. Taylor St., Chicago, IL 60607-7059
I. Arslan
Affiliation:
Department of Physics, University of Illinois, 845 W. Taylor St., Chicago, IL 60607-7059
Y. Xin
Affiliation:
National High Magnetic Field Laboratory, Florida State University, 1800 E. Paul Dirac Drive, Tallahassee, FL 32310
K. Kishida
Affiliation:
NRIM, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, JAPAN
S. Stemmer
Affiliation:
Department of Mech. Eng. & Materials Science, Rice University, 6100 Main St., Houston, TX 77005-1892
Get access

Abstract

A complete understanding of the complexities behind the structure-property relationships at materials interfaces requires the structure, composition and bonding to be characterized on the fundamental atomic scale. This level of characterization is beyond the scope of a single imaging or microanalysis technique and so to solve practical interface problems, correlation between multiple techniques must be achieved. Here we describe recent advances in the JEOL 2010F 200kV field-emission STEM/TEM that now allow atomic resolution imaging and analysis to be obtained in both TEM and STEM mode and discuss two applications of these techniques

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Sutton, A. P. and Balluffi, R. W., Interfaces in Crystalline Materials (Oxford University Press, 1995).Google Scholar
[2] McGibbon, M. M., Browning, N. D., Chisholm, M. F., McGibbon, A. J., Pennycook, S. J., Ravikumar, V. and Dravid, V. P., Science 266, 102 (1994).Google Scholar
[3] Merkle, K. L. and Smith, D. J., Phys. Rev. Letts. 59 2887 (1987).Google Scholar
[4] Ichinose, H. and Ishida, Y., Phil Mag A 43, 1253 (1981).Google Scholar
[5] Chisholm, M. F., Maiti, A., Pennycook, S. J., and Pantelides, S. T., Phys Rev Lett 81, 132 (1998).Google Scholar
[6] Nellist, P. D. and Pennycook, S. J., Phys Rev Lett 81, 4156 (1998).Google Scholar
[7] Ernst, F., Keinzle, O. and Ruhle, M., J. Eur. Ceram. Soc 19, 665 (1999).Google Scholar
[8] Williams, D. B. and Carter, C. B., Transmission electron microscopy: a textbook for materials science (Plenum, 1996)Google Scholar
[9] Egerton, R. F., Electron Energy Loss Spectroscopy in the Electron Microscope (Plenum, 1996).Google Scholar
[10] Watanabe, M. and Williams, D. B., Ultramicroscopy 78, 89 (1999)Google Scholar
[11] Browning, N. D., Chisholm, M. F. and Pennycook, S. J., Nature 366, 143 (1993).Google Scholar
[12] Batson, P. E., Nature 366, 727 (1993).Google Scholar
[13] Electron Diffraction Techniques, edited by Cowley, J. M. (Oxford University Press, 1992)Google Scholar
[14] James, E. M. and Browning, N. D., Ultramicroscopy 78, 125(1999).Google Scholar
[15] James, E. M., Browning, N. D., Nicholls, A. W., Kawasaki, M., Xin, Y. and Stemmer, S., J. Electron Microscopy 47, 561(1998).Google Scholar
[16] Cowley, J. M., J. Elect. Microsc. Technique 3, 25 (1986).Google Scholar
[17] Cowley, J. M., Appl. Phys. Lett. 15, 58 (1969).Google Scholar
[18] Jesson, D. E. and Pennycook, S. J., Proc. R. Soc. Lond. A 449, 273 (1995).Google Scholar
[19] Nellist, P. D. and Pennycook, S. J., Ultramicroscopy 78, 111(1999).Google Scholar
[20] Xin, Y., James, E. M., Arslan, I., Sivananthan, S., Browning, N. D., Pennycook, S. J., Omnms, F., Beaumont, B., Faurie, J-P. and Gibart, P., in press Applied Physics LettersGoogle Scholar
[21] Ankudinov, A. L., Ravel, B., Rehr, J. J. and Conradson, S. D., Phys Rev B 58, 7565 (1998).Google Scholar
[22] Lyman, C.E., Goldstein, J.I., Williams, D.B., Ackland, D.W., Harrach, S. Von, Nicholls, A.W. and Statham, P.J., J. Microscopy, 176, 85 (1994)Google Scholar
[23] Williams, D.B. and Steel, E.B., Analytical Electron Microscopy-1987, 228 (1987)Google Scholar
[24] Spence, J. C. H., Experimental High Resolution Electron Microscopy, (Oxford University Press, 1981)Google Scholar
[25] Stemmer, S., Streiffer, S. K., Browning, N. D. and Kingon, A. I., Applied Physics Letters 74, 2432 (1999).Google Scholar
[26] see Kingon, A. I., Streiffer, S. K., Basceri, C. and Summerfelt, S. R., MRS Bulletin 21, 46 (1996) and references thereinGoogle Scholar
[27] Basceri, C., PhD dissertation, North Carolina State University, Raleigh 1997.Google Scholar
[28] Rujiwarat, S., Xin, Y., Browning, N. D., Sivananthan, S., Smith, D. J., Chen, Y. P. and Nathan, V., Applied Physics Letters 74, 2346 (1999).Google Scholar
[29] Xin, Y., Rujiwarat, S., Sporken, R., Browning, N. D., Sivananthan, S., Pennycook, S. J., and Dhar, N. K., Applied Physics Letters 75, 349 (1999).Google Scholar
[30] Bringans, R. D., CRC Crit. Rev. Solid State Mater. Sci. 17, 353 (1992).Google Scholar